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Thesis Summary

Quantum annealing is a heuristic analog quantum algorithm that promises po-
tential quantum speedup over classical algorithms for a huge variety of optimiza-
tion problems. Current existing annealers, despite their technical complexity
and large qubit number, in the several thousands, display very short coherence
times, making the annealing process incoherent.

The main goal of this thesis is to initiate an alternative path towards build-
ing coherent quantum annealers based on superconducting flux qubits. In this
thesis, many techniques and methods have been established, and the results
obtained represent the first coherent control of superconducting qubits in the
QCT group, and, in general, in Southern Europe.

An uncoupled flux qubit device is designed to benchmark qubit coherence
that will be used as the building block for future iterations of coherent quantum
annealers. The Hamiltonian design of the flux qubits is focused on reducing
the persistent current to reduce flux noise susceptibility. The processor is de-
signed so that common coherence benchmarking experiments, such as T1 and
T2 measurements, are performed. The physical design has been iterated to un-
derstand the role the qubit loop configurations and the qubit frequency have on
the coherence times.

The flux qubits are measured inside a dilution refrigerator, where special
focus is put on magnetic shielding. Spectroscopy measurements provide initial
information on the qubit parameters and quality. Coherent control of flux qubits
is achieved in the form of coherent Rabi oscillations, which constitutes one of the
most important results of this thesis. Rabi oscillations are repeated for many
flux operation points to understand the noise mechanisms. Decay times of 40us
are shown, which are among the best results for flux qubits. However, the
qubit coherence is low, leading to coherence times shorter than 20ns, probably
because of flux noise. Moreover, due to device imperfections, the qubits could
not be characterized at their optimal coherence conditions, which otherwise
corresponds to the initial configuration for quantum annealing. In summary, the
coherence results of the flux qubits measured represent an important benchmark
in the development of a coherent quantum annealer and provide very valuable
information on how to improve the flux qubits for future iterations of quantum
annealing processors.

As an initial ramp-up phase of this thesis work, experiments with transmons
qubits, which are a very well established technology, were performed to develop
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the time-domain measurement techniques in the newly established QCT lab, and
to set a superconducting quantum computing setup ready to perform quantum
algorithms. Indeed, a Universal Approximant algorithm was executed on a
single transmon qubit to experimentally prove the approximation capabilities
of a single-qubit quantum algorithm.

In parallel to the development of qubit experiments, intrinsic properties of
thin-film aluminum has been studied, being the most common material for build-
ing superconducting qubit circuits. The magnetic penetration depth of thin film
superconducting aluminum has been studied as a function of the film thickness.
This calibration, not previously performed in the literature, is especially rele-
vant for the design of flux-sensitive devices, such as flux qubits. The penetration
depth is closely related to the so-called kinetic inductance, which is a signifi-
cant portion of the total inductance in superconductors. This study allows for
a better design determination of the inductance in superconducting circuits.
Moreover, it points to the possibility of a change in superconductivity type in
aluminum in the typical range of thicknesses used in superconducting circuit
experiments.

Finally, and in relation to improving the qubit readout fidelity, through a
brief stay in NTT (Japan) a quantum-limited amplifier has been redesigned to
improve its usability. The quantum-limited amplifier is theoretically identical
as one already developed by Arpit Ranadive from the Grenoble team led by
Dr. Nicolas Roch, a collaborator of the QCT group, which consists on an array
of Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL). The
SNAIL circuit is identical to that of the flux qubit, but operated in a different
regime. The work developed here will be continued with the fabrication of the
actual devices.



Resumen

El "quantum annealing" es un algoritmo cuántico analógico heurístico que ofrece
una posible ventaja cuántica sobre los algoritmos clásicos para una amplia gama
de problemas de optimización. A pesar de la complejidad técnica y el consider-
able número de qubits en los procesadores de "quantum annealing" existentes,
estos muestran tiempos de coherencia muy breves, lo que resulta en un proceso
de annealing incoherente.

La tesis tiene como objetivo principal abrir un camino alternativo hacia la
construcción de "quantum annealers" coherentes basados en "flux qubits" su-
perconductores. Se han establecido diversas técnicas y métodos, y los resultados
obtenidos representan el primer control coherente de qubits superconductores
en el grupo QCT y, en general, en el sur de Europa.

Se ha diseñado un dispositivo de "flux qubits" desacoplados para medir la
coherencia de los qubits, que se utilizarán como componente básico para futuras
iteraciones de "quantum annealers" coherentes. Los flux qubits se miden dentro
de un refrigerador de dilución, prestando especial atención al aislamiento mag-
nético. El control coherente de los qubits de flujo se logra mediante oscilaciones
de Rabi coherentes, repetidas en varios puntos de operación del flujo magnético
para comprender los mecanismos del ruido. Se han observado tiempos de de-
caimiento de 40 us, que se encuentran entre los mejores resultados para "flux
qubits". Sin embargo, la coherencia del qubit es baja, lo que resulta en tiem-
pos de coherencia inferiores a 20 ns, probablemente debido al ruido magnético.
Debido a imperfecciones en el dispositivo, los qubits no pudieron caracterizarse
en condiciones óptimas de coherencia, que corresponderían a la configuración
inicial para "quantum annealing". En resumen, los resultados de coherencia
medidos en los qubits de flujo representan un hito importante en el desarrollo
de un "quantum annealer" coherente y ofrecen información valiosa sobre cómo
mejorar los qubits de flujo para futuras iteraciones de procesadores.

Paralelamente al desarrollo de experimentos con qubits, se han estudiado las
propiedades intrínsecas de capas delgadas de aluminio, el material más común
para construir circuitos de qubits superconductores. Se ha investigado la pro-
fundidad de penetración magnética del aluminio superconductor de capa fina en
función del espesor de la capa. Esta calibración, que no se había realizado previ-
amente en la literatura, es especialmente relevante para el diseño de dispositivos
sensibles al flujo, como los "flux qubits".
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Resum

El "quantum annealing" és un algorisme quàntic analògic heurístic que ofereix
una possible avantatge quàntica sobre els algorismes clàssics per a una àm-
plia gamma de problemes d’optimització. Malgrat la complexitat tècnica i el
considerable nombre de qubits en els processadors de "quantum annealing" ex-
istents, aquests mostren temps de coherència molt curts, resultant en un procés
d’annealing incoherent.

La tesi té com a objectiu principal obrir un camí alternatiu cap a la construc-
ció de "quantum annealers" coherents basats en "flux qubits" superconductors.
S’han establert diverses tècniques i mètodes, i els resultats obtinguts representen
el primer control coherent de qubits superconductors al grup QCT i, en general,
al sud d’Europa.

S’ha dissenyat un dispositiu de "flux qubits" desacoblat per mesurar la co-
herència dels qubits, que s’utilitzaran com a component bàsic per a futures
iteracions de "quantum annealers" coherents. Els flux qubits es mesuren dins
d’un refrigerador de dilució, prestant especial atenció a l’aïllament magnètic.
El control coherent dels qubits de flux s’aconsegueix mitjançant oscil·lacions de
Rabi coherents, repetides en diversos punts d’operació del flux magnètic per
comprendre els mecanismes del soroll. S’han observat temps de decaïment de
40 us, que es troben entre els millors resultats per a "flux qubits". No ob-
stant això, la coherència del qubit és baixa, la qual cosa resulta en temps de
coherència inferiors a 20 ns, probablement a causa del soroll magnètic. A causa
d’imperfeccions en el dispositiu, els qubits no van poder ser caracteritzats en
condicions òptimes de coherència, que correspondrien a la configuració inicial
per a "quantum annealing". En resum, els resultats de coherència mesurats en
els qubits de flux representen un avenç important en el desenvolupament d’un
"quantum annealer" coherent i ofereixen informació valuosa sobre com millorar
els qubits de flux per a futures iteracions de processadors.

Paral·lelament al desenvolupament d’experiments amb qubits, s’han estudiat
les propietats intrínseques de capes primes d’alumini, el material més comú per
construir circuits de qubits superconductors. S’ha investigat la profunditat de
penetració magnètica de l’alumini superconductor de capa prima en funció del
gruix de la capa. Aquesta calibració, que no s’havia realitzat prèviament a la
literatura, és especialment rellevant per al disseny de dispositius sensibles al
flux, com els "flux qubits".
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Preface

I have had a great PhD thesis: I’ve met incredible people, studied amazing
science, travelled to many places, and, in general, I learned a lot. I’m perfectly
aware that this global satisfaction is not always the case, so I must be very
happy and grateful for that.

It all started when I finished my Master’s thesis, and I decided to take a
break to think what I wanted to do next. That 9-month break took more than
three years in the end, where I had enough time to mature. Work as a developer
in a consultant company was much more valuable for my PhD than I thought
at that time. This break allowed me to have a general picture of what a PhD
meant.

During these three years I decided that I wanted to do experimental physics,
unlike my previous studies. I needed to feel the physics. As much as I like theory,
I felt I had to do experiments to comprehend what was the theory talking about.
At that time, Bruno told me that there was one person, Pol, who was coming to
build a quantum computer in Barcelona, and he was looking for PhD students.
I got in contact with José Ignacio, and then with Pol. Afterwards, I knew that
I finally found the PhD I wanted to pursue.

However, this nice story is not strictly true, as until the very last moment
I was also searching for a climate science PhD. I remember visiting a climate
physics researcher that advised me to go to quantum computing and jump into
the dollar. After some years, I think I took the right decision, although study-
ing how climate affects virus transmission was a good PhD topic to start at
2019. Quantum hype has been enormous, but even the word "quantum" has
weaknesses fighting against a global pandemic.

My PhD stated at the BSC Quantic group, a primarily theoretical group with
Pol and I as the experimental counterparts. Soon, however, the experimental
group moved to IFAE where we were going to have our own lab. Meanwhile,
we were at Sergio Valenzuela’s lab at ICN2 as visitors, which were my first two
years of PhD. All this deeply complicated explaining my official workplace to
my friends, although I managed to meet several different people along the way.

At the very beginning of my PhD, I could share a month with Chris Warren,
a visiting researcher that managed to measure the qubit frequency just a week
before leaving. However, soon after he left I found myself learning how to use
a ton of time-domain new equipment to try quantum computing. Best learning
experience you can get.

17
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2019 started with me struggling with AWG drivers, and continued with a
sub-optimal loss of Helium 3 of the dilution refrigerator. During this time, a
new master’s student joint the group, Rafael Luque, which deeply helped me
develop my ping-pong skills. In May 2019 I had a brief stay at MIT, which was
tremendously valuable to learn how to run time-domain experiments, and to get
an experience on how a many-body scientific group work. Importantly, it was
during this spring that Pol joined IFAE, which involved the addition of Manel
to the team, and Qilimanjaro was founded.

Finally, one year after I started my PhD, I managed to run the first-ever
coherent control of a superconducting qubit in Southern Europe∗. I remember
doing them remotely from my sofa, on a rather quiet weekend, and repeating
them in many different shapes until feeling confident to say it out loud.

In november 2019, another PhD student joint, Fabian, which made me re-
ally happy. Also, I had a couple of months to replicate all the measurements
I was reading in the literature to calibrate and characterize our setup. The
experiments shown in Chapter 4 reflect some of the most fun part of my PhD.
Finally, we deployed an algorithm on my beloved transmon qubit together with
the Quantic BSC group. Working together with Adrian, a quantum algorithm
researcher, was also a learning experience. Then, March 2020 had something to
say.

After mid-2020, I have a hard time setting timestamps to events, as many
things happened. In no order in particular, three new PhDs entered in the
group, also a postdoc, Qilimanjaro started hiring people and we started sharing
the lab with them, more master’s and bachelor’s students joined the group, we
had a visitor researcher for a year, I went to Grenoble to do another short stay,
I started attending to conferences and schools, etc. However, the most relevant
part for the group was that the lab was finally built, and the first fridge installed
in fall of 2020. Although building a lab don’t directly lead to publications, it is
an invaluable experience.

During these years (2020-2022), we started our pursue to experiment with
flux qubits. Fabian and Yifei, together with Gemma, started trying to fabricate
our own qubits, while Fabian and me performed the design of the flux qubits,
with the help of the master’s student Barkay. We sent the design to Glasgow
University in what we called the Glasgow qubits. Pandemic heavily delayed
these qubits, which were first measured in 2021. Unluckily, we couldn’t see the
qubits.

Meanwhile, I started working on the magnetic penetration depth of alu-
minum, which introduced me to hard superconductivity theory. It took me a
while to fully understand which were and what meant all the superconduct-
ing length scales. Together with Queralt and Gemma, we started fabricating
chips, and measuring them was a very important part of my PhD. This exper-
iment led to my first presentation at a conference, in the APS March Meeting
2022 at Chicago, with the important help of David Eslava and Yifei during the

∗This is the largest mass of land over which we feel entitled to claim the first Rabi oscil-
lations.
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measurements.
In general, 2022 occurred in between coffee breaks with Alba, Luca, and Elia.

Another batch of flux qubits arrived, which showed that flux qubits were indeed
there, but they were still not ready to be coherently controlled. Penetration
depth studies showed promising results, but we still had to find out that the
simulations couldn’t be 2D. 2022 ended with a two-month life-changing stay at
Japan. Japan showed me that onsens, izakayas, and TWPA’s made a really nice
combination. It was a long coffee break.

Then, we arrive at 2023, which has been probably the greatest year of all of
them. It started with an otaku version of myself heading into another March
Meeting at Las Vegas, in one of the most fun conferences I have been. Also, it
was at that conference that I finally found myself understanding all the talks
and getting the feeling that I knew the field.

In April 2023 Fabian and I organized a quantum school on superconducting
qubits at Benasque, with the help of Pol. This was such an incredible school,
and truly remarkable learning experience. Not many people get to organize a
school during their PhD, and definitely not such an amazing one.

The PhD was heading to a happy end. After Benasque, I realized I had only
one goal: finish my PhD thesis. In May we finally understood the penetration
depth results after long hours with Sonnet simulations and Tinkham reading.
The paper, which I started to write in August, was ready to go. The preprint
was finally out few days before the thesis submission and the journal submission
will be done right after I finish writing this preface.

Then, also in August, I put my life on hold to write the PhD dissertation.
Honestly, except for 3-4 days of heavy stress a week before the submission, it
has been a very interesting and enjoyable part of my PhD. Even more when, in
the middle of the writing, a new batch of flux qubits arrived. Against all the
odds, we managed to coherently control them. Arguably the most important
results of my PhD came less than two months before submission, which was
such a nice way to end a very enjoyable thesis.
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Chapter 1

Introduction to Analog
Quantum Computers

Classical computers have progressed enormously over the past decades, and
humankind has significantly benefited from many of the developments enabled
by the computing technology. However, certain problems are still too complex
for classical computers to tackle. These problems are sometimes solvable, but
the resources needed make them unattainable, sometimes leading to millions of
years of computing time even using the best supercomputers.

Quantum computing is a conceptually different approach to computation,
since the fundamental basis is changed to follow quantum laws, which generates
a quantum logic[Nie11]. This quantum logic is not better than the classical one,
but it can lead to dramatic speedups in several problems of great interest[Sho04;
Chi08; Lad10]. Although quantum computers are not expected to overcome
classical computer performance in all aspects, there are many areas where it
can lead to a substantial quantum advantage: ground state simulation in com-
plex molecules[Bau20], portfolio optimization[Her22], decrypting RSA cryptog-
raphy codes[Sho94], advanced combustion modeling[Jak22], designing metama-
terials[Kit20], transportation route optimization[Neu17], many-body quantum
physics simulations[Smi19], etc.

Building a quantum computer, however, is not as trivial a task, as one
could imagine. In the last couple of decades, dramatic progress has been made,
and now there exist several prototypes of quantum computers where quantum
algorithms can be tested [McE21; Jur20; Zhu21; Kin21; Zha17; Pog21]. Much
more development is needed in order to provide practical quantum advantages.
On the software side, new algorithms have to be developed to leverage the
current quantum processors. The promises are so high, deserving the effort of
pursuing quantum computation.

The goal of this chapter is to give an introduction into the broad topic
of quantum computing from the theoretical point of view, focusing on Analog
Quantum Computing. Section 1.1 introduces the basics of quantum computa-
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Figure 1.1: Bloch Sphere. The qubit state |Ψ⟩ is represented as a vector pointing at the
surface of the Bloch sphere.

tion: namely the qubits, and the quantum algorithms. The paradigm of Analog
Quantum Computing is explained in Section 1.2, where its main founding base
are detailed. There, the current state of the field and its main variations are
exposed, while comparing it with the most dominant quantum computation
paradigm: Digital Quantum Computing. Finally, in Section 1.4 this thesis is
outlined and put into context.

1.1 Basics of quantum computing: qubits and al-
gorithms

Bits are the unit of information in classical information and, thus, of classical
computation. From the theoretical description, bits are binary variables with
two possible values usually labeled as 0 and 1. Quantum computation has
evolved analogously to classical computation and its unit of information is called
a quantum bit, or qubit. Similar to classical bits, qubits also exist in binary
states, labeled as 0 and 1. These binary values refer to the two possible qubit
states, |0⟩ and |1⟩. However, the qubit can represent any arbitrary superposition
of |0⟩ and |1⟩. The state of a qubit is often illustrated using a vector within a
sphere, known as the Bloch sphere (see Fig. 1.1). Nevertheless, when measured,
a qubit can yield only one of two values, 0 or 1, thus limiting its information
capabilities.

In principle, any quantum system could be used as a qubit if it meets specific
criteria[DiV00]. Summarizing, there should be a way in this quantum system
to isolate its dynamics to just two states. Moreover, it should be possible to
initialize, control and measure this qubit efficiently. If all this can be imple-
mented before decoherence affects quantum evolution, and many qubits can
be coupled together, that system is suitable for quantum computing. Various
technologies are potential candidates for constructing quantum computers, with
superconducting qubits proving to be one of the most successful thus far[Kra19].
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A quantum computer made out of working qubits needs algorithms to per-
form actual tasks. These algorithms are, ultimately, a global unitary operation
on the qubits, which brings them from an initial known state to the solution of
a specific problem. The qubits are initialized in a state, |Ψ0⟩, which typically is
the ground state of the system. |Ψ0⟩ is typically a product state, which can be
expressed by their individual qubit states, |Ψ0⟩ =

∏
i |φ0⟩. An algorithm evolves

the qubit states over time until a final state |Ψf ⟩, which is then measured and
a series of |0⟩’s and |1⟩’s are obtained, which are the answer to a problem. In
Digital Quantum Computing, this evolution consists of discrete gates [Mon15],
while in Analog Quantum Computing it involves a continuous evolution of the
qubit control parameters [Alb16]. Ideally, |Ψf ⟩ should also be a product state
with the individual qubits in one of the two computational eigenstates, ensuring
a probability of measuring the solution equal to 1. If the solution is a superpo-
sition, one needs statistics.

However, real algorithms do not lead to the exact solution due to qubit de-
coherence [Pre18; Bha21]. This limitation is acceptable as long as a problem
solution is achieved in a reasonable number of trials or if a satisfactory solution,
even if not exact, is obtained, particularly in optimization problems. Even-
tually, one needs quantum error correction [qec] to be immune to individual
errors. However, the current combination of high error rates and limited num-
ber of qubits in existing processors requires further advancements for quantum
computing to effectively solve real-world problems.

1.2 Analog Quantum Computing

Analog Quantum Computing (AnQC) relies on continuous evolution of the sys-
tem leveraging the analog nature of quantum mechanics. AnQC focuses on the
evolution of a Hamiltonian by modifying the system energies and interactions
until a desired final Hamiltonian, Hf is reached. The solution to the prob-
lem is usually encoded in the ground state of Hf . Interestingly, there exist
known methods to express optimization problems into Hamiltonians suitable
for AnQC[Glo18].

AnQC is commonly confused with Adiabatic Quantum Computation (AdQC)
and Quantum Annealing (QA)∗. They are all similar terms, and, in some sit-
uations, no distinction is required. AnQC is the most general of all, and only
imposes continuous evolution as the algorithmic driving force. AdQC, on the
other hand, is a well-developed quantum computing paradigm, that requires
this analog evolution to be strictly adiabatic [Dam01; Far00a; Alb16]. Finally,
QA is a heuristic method which consists on sweeping the control fluxes of Ising
Hamiltonians until the final state is the solution to an optimization problem

∗For the rest of the thesis after this chapter, no clear distinction will be formulated be-
tween AnQC, AdQC, and QA, since, from the experimental point of view in the context of
superconducting qubits, they have many similarities. AQC (Analog Quantum Computing)
will determine Analog Quantum Computing in the context of the Adiabatic and Quantum
Annealing formalism.
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[Apo89; Kad98; Cro20]. In this sense, QA is an algorithm inside AnQC that, if
performed sufficiently slow, may operate as AdQC.

Analog Quantum Computing, however, is not only reduced to the AdQC
model of computation. Some other paradigms exist, such as quantum reservoir
computing [Fuj16], quantum simulations [Alt19], quantum walks, etc. However,
throughout this thesis only the AdQC and QA versions of analog quantum
computing will be considered.

1.2.1 Adiabatic Quantum Computing

AdQC has been proven to efficiently simulate any digital quantum algorithm
[Aha04], thus ensuring universal computation also at the analog level. AdQC
bases its predictions on the adiabatic theorem [Bor28; Kat50; Mes61], which
ensures that, if a system starts at its ground state and evolves at a slow enough
pace, the instantaneous |g⟩ is not escaped during the evolution, successfully
ending with the ground state of a final Hamiltonian, Hf . The whole body of
AdQC consists of determining how slow this evolution needs to be, defined by
the final time, tf . This mostly depends on the minimal gap along the evolution,
defined as

∆ ≡ min
t∈[0,tf ]

∆(t) = min
t∈[0,1]

(ε1(t)− ε0(t)) , (1.1)

where ε0,1(t) are the instantaneous energies of the ground (0) and excited states
(1). Thus, the final time must satisfy [Alb16]

tf ≫ 1

∆2
, (1.2)

in order to ensure that the system stays in the ground state†.
However, the exact determination of ∆ is hard, making the amount of known

adiabatic quantum algorithms that hold quantum advantage a very reduced
number [Alb16].

Moreover, AdQC considers the system as closed, which is not true in real
quantum processors. Predictions from AdQC have to be then extended to open
systems where decoherence alters the pure adiabatic evolution of the system.

1.2.2 Quantum Annealing

QA comes as a pragmatic approach to AdQC, since it follows its overall method-
ology to find optimal realistic algorithms. Although QA has not theoretically
been proven to yield a quantum advantage, it is believed that it can lead to quan-
tum advantage even without such a mathematical demonstration, similarly to
neural networks in classical computing.

The name of quantum annealing [Kad98] comes as an analogy to simu-
lated annealing [Kir83], which is a classical algorithm used to solve optimiza-
tion problems in which the simulated temperature is initially increased to avoid

†A more rigorous version of this statement can be found in [Alb16].
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metastable states, and then it is reduced until the ground state of the desired
Hamiltonian is found. Simulated annealing itself takes its name from the metal
annealing used in metallurgy, where metals are heated and then cooled in order
to change their microscopic structure, reducing impurities in the grain.

Standard quantum annealing is an algorithm that consists in preparing the
ground state of a Hamiltonian which is easy to prepare, and interpolate it into
another Hamiltonian, whose ground state encodes the solution to a certain prob-
lem. QA is commonly used for solving combinatorial problems, which are rep-
resented in Ising Hamiltonians. The spin glass Hamiltonian is expressed as

Hf =
∑

hiσz,i +
∑

i<j

Jijσz,iσz,j , (1.3)

where σz,i is the Z Pauli matrix of qubit i, and hi and Jij are the single-qubit
a two-qubit Ising terms, respectively. The subscript in Hf is to show that this
is the shape of the final Hamiltonian. Spin glass problems represented by this
Hamiltonian are known to be hard problems.

The initial Hamiltonian, H0, is commonly taken as

H0 =
∑

i

hx,iσx,i , (1.4)

whose ground state is the product state with equal superposition of all the
states. Thus, it is a convenient starting point as it naturally explores all the
available classical Hilbert space.

The annealing algorithm or annealing schedule, evolves the initial H0 into
Hf

H(t) = A(t)H0 +B(t)Hf , (1.5)

where A(t) and B(t) are the amplitudes of the initial and final Hamiltonians.
A(t) goes from 1 to 0 as time evolves, and B(t) evolves inversely.

Often, a normalized time variable is used, s(t), which goes from s(t = 0) = 0
to s(t = tf ) = 1. s(t) captures the evolution rate of the Hamiltonians, which
should be slowed down when approaching the minimum gap, ∆. However, the
exact location of ∆ is not generally known. Equation (1.6) can be rewritten as

H(s) = (1− s)H0 + sHf . (1.6)

1.2.3 Beyond Standard Quantum Annealing
The simple structure of Eq. (1.6) can be further extended in real-case scenar-
ios. First, the sequence in Eq. (1.6) assumes that the Hamiltonians are tuned
uniformly. However, each qubit can be discretely targeted by inhomogeneous
driving of Hamiltonians. These drivings may avoid first-order phase transitions
that may otherwise occur at the middle the anneal, thus considerably increasing
∆. This approach, however, is highly problem-dependent [Sus18].

Other approaches consist in adding extra terms in the standard annealing
sequence. Some of the more relevant are introduced here:
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• Catalysts. Adding a catalyst [Alb17], HC , that vanishes both at the start
and at the end of the anneal,

H(s, λ) = (1− s)H0 + sHf + (1− s)λHC , (1.7)

where λ is another normalized time variable that also goes from 0 to 1 as
time evolves. The addition HC could change a first-order transition to a
second-order one.

• Reverse annealing. Reverse annealing consists of starting the annealing
sequence at an initial state, Hr, that contains partial information about
the final desired state [Per08]. The reverse annealing sequence is described
by

H(s, λ) = (1− s)λH0 + sHf + (1− λ)Hr . (1.8)

Hr is detuned with λ while the transverse field H0, initially at zero, is
increased and then reduced. This way, the system explores the region
around the initial proposed solution, which can be a more efficient way
than exploring the whole parameter space.

• Shortcuts to adiabaticity. Adiabaticity imposes a severe restriction on
the algorithm time. However, quantum annealing does not need to fulfill
adiabaticity. Therefore, shorter paths than the adiabatic one leading to the
optimal solution may be explored [Sal16]. This is now known as diabatic
annealing[Cro20].

• Counter-diabatic driving. In the same direction as the previous point,
sometimes, extra counter-diabatic terms are added, which counteract the
diabatic behavior due to a fast anneal [Dem03].

Moreover, the final Hamiltonian considered so far, the Spin Glass Hamil-
tonian, is a stoquastic Hamiltonian [Sin09]. Stoquastic Hamiltonians are de-
fined as having a matrix representation with all off-diagonal elements being
non-positive in the considered basis. Stoquasticity is important as a classical
simulation method known as quantum Montecarlo is believed to be inefficient
when simulating non-stoquastic Hamiltonians, because of a limitation called the
sign problem. However, the sign problem does not occur for stoquastic Hamil-
tonians, making them easier to simulate. However, it is uncertain whether
non-stoquasticity is needed to provide quantum advantage [Cia20; Hal20].

A non-stoquastic Hamiltonian can be achieved by adding σXσX interaction
between the qubits. Apart from introducing σXσX interactions, other interest-
ing interactions are many-qubit couplings [Cha16; Men19], such as σZσZσZσZ ,
which may enhance the annealer capabilities.

In a more pragmatic level, increasing the number of coupled qubits is also
desired, as all-to-all coupling is not easily achieved in superconducting qubit
annealers. Therefore, the original problem Hamiltonian has to be embedded
into the physically available processor. Finding an optimal embedding can itself
be a very hard problem.
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Finally, the LHZ (Lechner-Hauke-Zoller) scheme is an alternative method
for quantum annealing, where the optimization problem is encoded in the local
fields acting on the qubits [Lec15]. This scheme allows for all-to-all coupling,
but all the interactions are 4-body terms acting on nearest neighbors. The LHZ
scheme can actually be implemented in many qubit technologies.

1.2.4 Comparison between Analog and Digital Quantum
Computing

Digital quantum computing (DQC) is similar to digital classical computing as
it relies on the application of logical gates to their individual components. How-
ever, unlike many of their classical counterparts, quantum logical gates are re-
versible, since they follow a unitary evolution. In general, quantum logic is
qualitatively different from classical logic.

Although DQC and AnQC can be based upon the same qubits, and both can
leverage their quantum properties to solve the same problem, the methodology
is considerably different. Technically DQC is also analog as the discrete logic
gates consist of continuous voltages or currents applied to the qubits [Mot09].
However, these continuous rotations are encapsulated as gates, and a digital
abstraction is based upon these.

Digital algorithms also typically start in the ground state of the system,
but their evolution rapidly deviates into highly excited states. These states are
much more subject to decoherence than following adiabatic evolution such as
in AdQC. One of the main decoherence mechanisms is relaxation to the ground
state, which in annealing is usually favourable, while in DQC it destroys the
algorithm. The other main decoherence mechanism, dephasing, typically occurs
in the energy basis of the system, which is the computational basis in DQC.
However, the dephasing in the energy basis is much less harmful in quantum
annealing. In general, one of the main promises of the analog method is that it
may be less impacted by decoherence than DQC [Alb15].

1.3 Implementations of Quantum Annealers

The only successful approach to build quantum annealers has been the technol-
ogy of superconducting flux qubits. These qubits are particularly suitable for
quantum annealing, as their ground state can hold two persistent current states
in opposite directions, which are the computational states. Controlling the flux
threading the superconducting loops, the annealing sequence can be performed.

Much of the development of quantum annealers is focused on increasing the
coherence of the individual qubits, which for early demonstration was very low.
Other paths of development are increasing the number of qubits, increasing the
connectivity of the annealer, improving readout efficiency, etc.

The most prominent quantum annealer implementation has been made by
the company D-Wave [Har09a; Joh09]. D-Wave annealers are, by far, the super-
conducting quantum processors with most qubits, currently. The last generation
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yields more than 5, 000 qubits. However, the qubit quality is not as good as the
gate-model quantum computers [Ozf19].

D-Wave qubits have short coherence, and it has recently been clear that im-
plementing coherent annealing with D-Wave systems is extremely challenging
[Kin22]. Moreover, the connectivity of the qubits is limited. The current Pega-
sus architecture has each qubit coupled to 15 different qubits. This connectivity,
although remarkable from the engineering point of view, requires embedding
the original Hamiltonian, thus reducing significantly the total amount of logical
qubits. Finally, only two-qubit stoquastic couplings are available in the current
configuration.

Other proposals of coherent quantum annealers have been developed, such
as a recent 25-qubit flux qubit quantum annealer built by MIT-Lincoln Labs
[Yan15; Web17], where a multilayer chip structure has been implemented. One
of the key aspects of this work is to use qubits with higher coherence as the
building blocks. However, the progress to 25 qubits has not shown the transla-
tion of this single-qubit high coherence to such a many-qubit system.

The LHZ [Lec15] scheme can also be implemented with various supercon-
ducting qubit platforms, which is another promising alternative of the standard
models of quantum annealing [Yam08; Yam22; Pur16]. A first prototype has
been developed recently at NEC using superconducting parametric oscillators
as qubits, where the unit cell of a LHZ annealer has been successfully developed.

In this context, Qilimanjaro Quantum Tech has emerged as a new player
pursuing the goal of a coherent quantum annealer [Can21]. Qilimanjaro has
the more general purpose of developing analog quantum computers, not only
focusing on quantum annealing.

This thesis aims to start another route towards coherent quantum anneal-
ers, starting from the very basic foundation: the design of flux qubits. These
flux qubits are designed to deploy long coherence times compared to D-Wave
systems. The flux qubits developed in this thesis are intended to serve as build-
ing blocks of future annealer designs which incorporate non-stoquastic couplers
as well as to perform alternative to the traditional annealing sequences while
preserving coherence throughout the process.

1.4 Thesis overview

The main goal of this thesis is to initiate another path to coherent quantum
annealers based on superconducting qubits. Therefore, in this thesis many
techniques and methods have been developed for the first time in the newly
established QCT lab at IFAE. The results represent the first coherent control
of superconducting qubits in the QCT group.

The theoretical building blocks of superconducting qubits is given in Chap-
ter 2. There, two types of qubits are introduced: transmons and flux qubits.
The former are one of the simplest superconducting qubits, and they are used to
introduce superconducting qubit experiments in this thesis Chapter 4. On the
other hand, flux qubits are superconducting qubits particularly suitable to per-
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form annealing schedules, where its ground state can hold superpositions of per-
sistent current states, which act as computational states. Apart from the qubit
introduction, an overview on the qubit operation, coupling and measurement
is also given, as well as the main noise mechanisms affecting superconducting
qubits.

The experimental setup used throughout the thesis is described in Chapter 3.
Three types of experiments have been performed: transmon qubit experiments
(Chapter 4), flux qubit experiments (Chapter 6) and resonator measurements
(Chapter 7). Each experiment has different requirements, being the flux qubits
the most fragile due to the special sensitivity to flux noise. However, the setup
is mostly similar in all experiments.

The transmon qubit experiments described in Chapter 4 are primarily used
to develop the time-domain measurement techniques in the QCT lab, and to
set a superconducting quantum computing setup ready to perform quantum
algorithms. Indeed, a Universal Approximant algorithm is run on a transmon
qubit to experimentally demonstrate the approximation capabilities of a single-
qubit quantum algorithm [Pér21].

Flux qubits are more complex circuits than transmon qubits, as they typi-
cally involve many Josephson junctions, increasing the number of variables to
describe the system. In Chapter 5, the Hamiltonian design of flux qubits is
developed so that it can be used as the basis to build a coherent quantum an-
nealer. Moreover, a comparison among many types of flux qubits is performed.
The dispersive interaction with a resonator is also designed, as it is required
for both qubit control and readout. An initial qubit-qubit coupling scheme is
proposed, along with a basic method to perform annealing schedules with flux
qubits, although such an experiment was not implemented at the time of writing
this thesis.

In Chapter 6 the flux qubits theoretically engineered in Chapter 5 are phys-
ically designed, while the manufacturing was performed by collaborators. The
flux qubits are characterized via spectroscopic measurements, which provides
initial information of the qubit parameters and quality. Coherent control of flux
qubits is achieved, which constitutes one of the most important results of this
thesis. The results using these flux qubits constitute an important benchmark
in the development of a quantum annealer and provides very valuable informa-
tion on how to improve flux qubits for future iterations of quantum annealer
processors.

In parallel to the development of qubit experiments, some focus has been
also set on studying fundamental properties from a very common material used
in superconducting qubits: aluminum. In Chapter 7, the magnetic penetra-
tion depth, λ, of thin film superconducting Al is studied as a function of the
film thickness. This calibration, not previously performed in the literature, is
especially relevant for the design of flux-sensitive devices, such as flux qubits.
λ is closely related to the kinetic inductance, which is a significant portion of
the total inductance in superconductors. This study [Lóp23] allows for a better
design determination of the inductance in superconducting circuits. Moreover,
it points to the possibility of a change in superconductivity type of Al in the
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typical range of thicknesses used in superconducting circuit experiments.
Finally, thanks to a brief stay in NTT (Japan), a quantum-limited amplifier

has been redesigned to improve its usability in Chapter 8. The quantum-limited
amplifier is theoretically identical as the one developed in [Ran21], which con-
sists on an array of SNAIL’s (Superconducting Nonlinear Asymmetric Inductive
eLement). The SNAIL circuit is identical to that of the flux qubit, but operated
in a different parameter regime. The work developed here will be continued
with the fabrication of the actual devices.



Chapter 2

Superconducting Qubits

A quantum computer can be based on many possible technologies[Bur23; Slu19;
Wu21]. Among them, superconducting qubits are arguably the most prominent
technology at this moment [Kra19; Bla21]. Their relative ease of fabrication
and their design tunability overcome drawbacks of the technology such as the
decoherence effects due to their large size.

In this chapter, the superconducting circuit formalism is introduced in Sec-
tion 2.1, detailing how these circuits can be utilized as qubits. Two types of
superconducting qubits are explored: first, the transmon qubit[Koc07], due to
its simplicity and its prevalent use in Digital Quantum Computing (DQC) in
Section 2.2, and, next, the flux qubits [Yan15], which are the key ingredient of
Analog Quantum Computing (AQC) in Section 2.3. Both these types of qubits
will later be employed in subsequent experiments within this thesis.

Then, a concise overview is provided on how to couple qubits (Section 2.4),
how to control them (Section 2.5), and which are the usual measurement tech-
niques (Section 2.6). Finally, a dedicated section on noise in superconducting
qubits is included (Section 2.7).

2.1 Superconducting Circuits

A superconducting circuit can be thought of an integrated circuit made out of
a superconducting material. The inclusion of superconductivity dramatically
changes the circuit behavior, since classical variables become quantum opera-
tors. Thus, the current I of the circuit is no longer a scalar variable but has to
be expressed as an operator, Î, acting on the circuit wavefunction, |Φ⟩. Then,
for instance, a superposition of two current states flowing in opposite directions
can occur in a quantum circuit.

The superconducting circuits can be engineered as qubits thanks to their
low dissipation, low noise susceptibility and nonlinearity. Moreover, these cir-
cuits are designed by scientists, instead of being fixed by nature, such as atoms.
Often referred as artificial atoms, these circuits allow for detailed tailoring of

33
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Substrate

Metal

Metal oxide

Figure 2.1: Schematic drawing of a transmon qubit. Two superconducting metallic pads are
sitting on top of a dielectric substrate. The two pads are connected via a thin dielectric metal
oxide layer that allows tunneling of the Cooper pairs.

their parameters within ranges that are challenging, if not impossible, in natural
atoms [For18]. However, this design flexibility has some drawbacks since circuit
contain more imperfections, and reproducibility of devices becomes a very im-
portant metric. Moreover, circuit defects can cause noise which diminishes qubit
coherence. Despite these a priori insurmountable obstacles, the success of this
technology is evident[Bla21]. The longer-term development and difficulties to
build larger system are still to be seen.

2.1.1 The transmon qubit as an example of a supercon-
ducting quantum circuit

Transmon qubits provide the simplest approach in order to understand how a
superconducting qubit works. The transmon qubit is depicted in Fig. 2.1. It
consists of a thin piece of aluminum wire sitting on top of a silicon substrate,
interrupted by a thin aluminum oxide layer and ended in two aluminum pads∗
[Koc07].

This transmon qubit is placed in a dilution refrigerator at temperatures
around 10 mK. At these temperatures, the aluminum of the transmon turns
superconductor. The paired electrons, named Cooper pairs, travel through the
metal in a dissipationless state†. The lack of dissipation is key for quantum

∗This is just a representative image. Some transmons are not made out of aluminum, have
different geometries, etc.

†This is only strictly true for DC voltage due to dielectric and phase-slip processes. How-
ever, this new state has considerably less dissipation than normal metals at AC also.
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computing applications, otherwise decoherence would quickly destroy the qubit
state.

The many-body dynamics of the entire superconductor can be described by
a single macroscopic wavefunction, [Tin04; Orl91]

Ψ(r⃗, t) = |Ψ0|eiφ((r⃗,t)) , (2.1)

where |Ψ0| is the wavefunction amplitude, which depends on the density of
paired electrons. The many-body dynamics can be described by the wavefunc-
tion phase φ, which allows for easy analytical treatment of the superconductor
physics.

The other key element is the oxide layer in between the metal pads, which
forms a Josephson junction, a disipationless nonlinear element[Jos62]. The non-
linearity is needed to break harmonicity and have uneven levels that can be
targeted separately by external radiation, as with natural atoms.

In order to provide the qubit a suitable working scenario, a dilution refriger-
ator offers a vacuum, shielded and low temperature environment for the qubit,
which heavily reduces environmental noise, thus increasing qubit coherence. The
low temperatures are required not only for the metal to be superconductor, but
to reduce thermal noise that would otherwise excite the qubit, and to initialize
the qubit. The photon thermal frequency can be computed by

ω =
kBT

ℏ
, (2.2)

where kB and ℏ are the Boltzmann and the reduced Planck constant respectively.
The ∼ 20 mK temperature of the fridge corresponds to ∼ 400 MHz, which
implies that the transmon qubit energies should lie well above this frequency.
The thermal excitation probability is

Pe =
1

1 + eℏωq/kBT
, (2.3)

with ωq the qubit frequency. For a typical ωq = 4 × (2π ×GHz), Pe < 0.1%.
However, as seen later, effective qubit temperatures can be higher than 20 mK,
thus leading to higher thermal populations, Pe ≈ 10%.

Although focused on the transmon, the same principles presented above
apply to all superconducting qubits.

2.1.2 LC Circuit
A LC harmonic oscillator is the simplest superconducting circuit, depicted in
Fig. 2.2[Voo16]. The Hamiltonian of such a circuit is

ĤLC =
q̂2

2C
+

Φ̂2

2L
, (2.4)

where q̂, is the charge at the capacitor and the Φ̂ is the flux at the inductor. q̂
and Φ̂ are canonically conjugate operators and follow the commutation relation
[Φ̂, q̂] = iℏ, analog to position and momentum in a mechanical oscillator.
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Figure 2.2: LC oscillator circuit schematic.

Another set of variables typically used are the number of charge, n̂, and the
phase of the superconducting wavefunction φ̂, related to the previous variables

q̂ = 2en̂ , (2.5)

Φ̂ =
Φ0

2π
φ̂ , (2.6)

which fulfill [φ̂, n̂] = i. Therefore, the variables used are left to convenience.
Similarly to the mechanical oscillation, the LC circuit Hamiltonian can be

rewritten in terms of ladder operators,

HLC/ℏ = ωLC â
†â , (2.7)

where ωLC =
√

1
LC is the oscillator frequency. The ladder operator is defined

as‡

a† =
1

2

(
φ̂

φzpf
+ i

n̂

nzpf

)
. (2.8)

φzpf and nzpf are the zero-point fluctuation of the phase and number operators
respectively, defined as

φzpf =

√
πZ0

Rq
(2.9)

nzpf =
1

2

√
Rq

πZ0
, (2.10)

where Z0 =
√
L/C is the oscillator impedance and Rq = h/(2e)2 is the resis-

tance quantum.
The spectrum of this circuit is purely harmonic since no nonlinear element

has been introduced. Therefore, the introduction of Josephson junctions are
needed to design a qubit. However, it is possible to use the harmonic modes of
an oscillator as qubits, as long as they are coupled to a superconducting circuit
with Josephson junctions, that enables non-classical state preparation in the LC
oscillator[Slu19].

‡From now on, hats are removed from operators, unless they are used to differentiate
between variables and operators.
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Figure 2.3: A Josephson junction (boxed cross) consists of a pure Josephson junction nonlinear
inductance (cross) in parallel with a capacitance.

2.1.3 Basics of Superconducting Circuits
Superconducting circuits can be engineered out of the combinations of three core
circuit elements: inductances, capacitances, and Josephson junctions [Koc07;
Man09; Yan15]. The first two are essentially classical. The Josephson junction,
on the other hand, is a purely quantum element and the key of the existence of
superconducting circuits.

As explained in Section 2.1.1, a Josephson junction consists of a thin dielec-
tric layer in between two superconducting metals. The dielectric is so thin that
the macroscopic wavefunction in Eq. (2.1) can tunnel through it. The Joseph-
son effect depends on the difference between the phases of the superconducting
wavefunctions at both sides of the dielectric, φ ≡ φ1 −φ2. The first and second
Josephson relations are

I(t) = IC sinφ(t) , (2.11)

V (t) =
Φ0

2π

∂φ

∂t
, (2.12)

where Φ0 = h/2e is the superconducting flux quantum. Combining these two
equations together, the following current-voltage relation arises

V = LJ(φ)
∂I

∂t
, (2.13)

where the Josephson inductance is defined as

LJ(I) =
LJ,0

cosφ(I)
≡ Φ0

2πIc cosφ(I)
=

Φ0

2πIc

√
1− (I/IC)

2
. (2.14)

The last relation shows that the Josephson junction behaves as a nonlin-
ear inductance. This nonlinearity is of utmost importance for superconducting
quantum devices. It is important to note that the Josephson junction is com-
posed of an ideal Josephson junction and a stray capacitance in parallel (see
Fig. 2.3).

The critical current, IC , is the parameter that defines the behavior of the
Josephson junction. Above this current, the Josephson effect vanishes and cur-
rent of unpaired electrons fully passes through the junction, causing ohmic dis-
sipation.
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Each of the three circuit elements mentioned has a typical energy scale as-
sociated. An analysis of the energies of the circuit gives a great insight to the
circuit behavior. If, for example, the charging energy dominates, the wavefunc-
tion is well approximated by a pure charge number state |N⟩. The three energies
are defined as§

EC =
e2

2C
,

EL =

(
Φ0

2π

)2
1

L
,

EJ =
Φ0

2π
IC . (2.15)

The relative strengths of these energies determines the regime over which the
circuit operates. Two qubits with equivalent circuits can behave very different if
their energies are different, such as fluxoniums and flux qubits, as explained in
Section 2.3.4. Both qubits considered in this thesis, the transmon and the flux
qubit, function within the flux regime, with EJ ≫ EC . In this regime, the states
closely resemble pure phase states and their charge susceptibility is considerably
reduced. Additionally, in both qubits EL is usually neglected, although it is very
large, as L ≪ LJ . However, the equivalent mode is frozen, so its dynamics do
not play a role.

2.1.4 Superconducting circuits as qubits
The design of a qubit requires of a nonlinear energy spectrum, so that two
levels can be isolated from the rest. At the low temperatures inside a dilution
refrigerator, a circuit with resonances in the few GHz-range, naturally relaxes
to |g⟩. Therefore, it is easy to confine the circuit dynamics to the two lowest
energy states, by controlling transitions between |g⟩ and |e⟩, whose frequency is
ωq = (Ee − Eg) /ℏ, with Eg,e the energies to the ground and excited state.

In DQC, |g⟩ and |e⟩ are commonly used as the computational basis, la-
belled as |0⟩ and |1⟩ respectively. This is different for AQC, as is discussed in
Section 2.3.1. From now on in this section, the two-lowest energy states are
considered the computational basis.

For aluminum-based circuits, the Cooper pairs will begin to break at fre-
quencies higher than 80 GHz, which sets an upper limit to ωq. Moreover, GHz
technology is much more accessible than THz one, so typically these circuits do
not operate above 10 − 15 GHz. On the lower frequency side, the fridge tem-
perature has a thermal energy of 0.4 GHz, as previously noted. This thermal
energy could easily cause incoherent qubit transitions[Zmu12]. Moreover, the
low-frequency noise is usually high since it has a 1/f spectrum [Yos06], so a
very low ωq is usually not desired.

§Note that EC corresponds to the charging energy of one electron, while a more convenient
definition for Cooper pairs would be E′

C = (2e)2/(2C). However, in order to be coherent with
the literature, the single-electron definition is kept, which usually causes a term 4EC in the
charging energy terms of the circuit H.
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C

Figure 2.4: Transmon circuit schematic.

Another relevant aspect in designing qubits is their susceptibility to noise,
a topic that will be covered in Section 2.7. For example, it is common to avoid
detrimental charge noise, which can be achieved by reducing EC [Koc07; Yan15].
Passive protection from noise can be obtained by circuit parameter design.

Qubits are not isolated but interact to other qubits, couplers, readout com-
ponents, etc. The strength and type of these interactions has to be also consid-
ered in the design. Superconducting circuits easily interact with each other by
sharing a capacitance, an inductance or a Josephson Junction[Kaf16; Web17].

Finally, when designing complex circuits involving many components, the
circuit Hamiltonian is not known beforehand. H is usually obtained by a process
called circuit quantization [Voo16], which consists of applying Kirchhoff laws on
the electrical circuit and later quantizing it. A brief explanation of the procedure
is given in Appendix A, and a detailed development on superconducting circuits
can be found in [Rip22].

2.2 Transmon Qubits
The transmon qubit circuit has already been introduced in Section 2.1.1[Koc07].
However, a more formal understanding is still pending.

The transmon circuit is shown in Fig. 2.4. It resembles an LC circuit
(Fig. 2.2) where L has been substituted by the nonlinear Josephson inductance.
The Hamiltonian of the transmon is

H = 4ECn
2 − EJ cosφ , (2.16)

where n, is the number of Cooper pairs transferred through the Josephson junc-
tion and the φ is the wavefunction phase difference between both sides of the
junction. EC = e2/(2CΣ) is the total capacitive energy of the transmon, with
CΣ = C + CJ .

The transmon operates in the flux regime, with EJ/EC ≈ 50. Therefore, the
transmons are dominated by EJ , which reduces considerably their susceptibility
to charge noise, which was the main limitations of its predecessor, the Cooper
pair box [Bou98], with a much lower EJ/EC ≈ 1.

As the qubit will normally stay at the bottom of the potential energy where
⟨φ⟩ ≪ 1, the Josephson terms of the transmon can be expanded in Taylor series:

H ≈ 4ECn
2 +

EJ

2
φ2 − EJ

24
φ4 . (2.17)
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Figure 2.5: a) Flux qubit circuit. b) Lower-energy spectrum of the flux qubit. The qubit gap,
∆, and the persistent current, IP , are visually identified.

The first two terms correspond to a harmonic oscillator (Eq. (2.4)). The third
term is the leading Josephson nonlinearity, which causes anharmonicity in the
qubit spectrum such that different transitions have different energies. This
Hamiltonian can be rewritten in terms of ladder operators,

H/ℏ = ωqa
†a+

δ

2
a†a†aa . (2.18)

ωq is the qubit frequency, and δ = ω12−ω01 is the anharmonicity of the system,
with ωij the frequency of the transition between states |i⟩ and |j⟩. In the
transmon, both ωq and δ can be directly obtained from the circuit energies,
since

ℏωq =
√

8EJEC − EC , (2.19)
ℏδ =− EC . (2.20)

If only the two lowest energy states are considered, the Hamiltonian is simply,

H/ℏ =
ωq

2
σZ . (2.21)

2.3 Flux Qubits
There are many different circuits that fall into the definition of a flux qubit
[Sil67; Orl99; Yan15; Rug06; Pol08; Pop24; Ste14]. In terms of the circuit
definition, they all have a Josephson junction in parallel to another inductive
element forming a loop. Under the appropriate external flux threading the loop
and ratio between the energies of the Josephson junction and the inductive
element, the two lowest-energy states can be described by superpositions of
current states flowing around the loop in opposite directions.

An example of a flux qubit is shown in Fig. 2.5a), following the original work
of [Orl99]. The circuit consists of a small Josephson junction on one side of the
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f=0.5 f≪0.5f<0.5

a) Double well b) Tilted double well c) Out of double well

Figure 2.6: Symmetric potentials of the flux qubit considering α > 0.5. a) In the sweet
spot, f = 0.5, the potential is a symmetric double well. b) A small tilt promotes one of the
persistent current states. c) When the tilt is too high, there is no double well and both |0⟩
and |1⟩ are located in the same well.

loop and two large junctions on the other side. The ratio between the small
and big junction IC ’s is defined as α = IC,α/IC , which strongly influences the
behavior of the qubits.

For a closed loop such as the one in Fig. 2.5a), the wavefunction must be
single-valued so that it is continuous, causing a total phase accumulated around
the loop of nπ, with n an integer value. Due to the phase-flux relation expressed
in Eq. (2.6), this corresponds to a number of trapped fluxoids nΦ0. The fluxoid
quantization permits the reduction of one of the three node variables as φ3 =
φ1 +φ2 +2πf , where φ1,2 are the wavefunction phase differences across the big
junctions, and φ3 corresponds to the small junction.

The Hamiltonian of this circuit is

H = 4EC

[
1 + α

1 + 2α
(n21 + n22) +

2α

1 + 2α
n1n2

]

− EJ [cos(φ1) + cos(φ2) + α cos(φ1 + φ2 + 2πf)] , (2.22)

where hats have been removed from the operators. Both EJ and EC (see
Eq. (2.15)) are referred to the energies of a large junction. The first term is the
capacitive term, and represents the kinetic energy. The second term denotes the
potential energy arising from the presence of Josephson junctions. The external
flux trapped in the qubit loop, Φext, is introduced through f = Φext/Φ0.

When the external flux is Φ0/2, or f = 0.5, the system is frustrated as
classically there is equal energy in generating current in one direction or the
other in order to have nΦ0 or (n+ 1)Φ0 trapped fluxoids. In this situation, for
1 > α > 0.5, |g⟩ is an equal superposition of the persistent current states in
both directions

|g⟩ = |0⟩+ |1⟩√
2

, (2.23)

as shown in Fig. 2.6a). |0⟩ and |1⟩ are the clockwise and counter-clockwise
persistent-current states respectively. This half-flux point is also called the
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sweet spot, as the qubit is insensitive to flux at this point, to first order. When
f deviates from the sweet spot, one of the two current directions becomes en-
ergetically favorable. For a sufficiently high flux bias, |g⟩ ≈ |0⟩ (|1⟩) for f > 0.5
(f < 0.5), as seen in Fig. 2.6b). However, for a very large flux bias, both the
two-lowest energy states fall inside the same well because the double-well regime
is destroyed, depicted in Fig. 2.6c).

The behavior described previously occurs for α > 0.5. To understand that,
let’s investigate the potential from Eq. (2.22), U ,

U/EJ = − cosφ1 − cosφ2 − α cos (φ1 + φ2 + 2πf) , (2.24)

It is more convenient to change to the variables to φ± = (φ1 ± φ2)/2. In the
symmetric case, where φ1 = φ2, thus φ− = 0, the potential is

U+/EJ = − cosφ+ − α cos (φ+ + 2πf) . (2.25)

U+ represents the main mode of the qubit, since U minima occur at φ1 = φ2. U+

is shown in Fig. 2.7 for different values of α at f = 0.5. When 1 > α > 0.5, there
exist a double well, with two energy minima corresponding each to a persistent-
current state. For α = 0.5, the circuit is in the quarton regime [Yan20], where
U ∝ φ4, and, in general, for α ≤ 0.5 the potential has a single well [Yan15].
While in all the regimes the circuit can be used as a qubit, the double-well regime
is the only suitable for quantum annealing as will be explained in Section 2.3.1.

When in the double-well regime and near f = 0.5, the two-lowest energy
levels of the flux qubit can be expressed as a spin 1/2-particle under a magnetic
field with parallel (σZ) and transverse components (σX)

H =
ℏ∆
2
σX + 2IPΦbσZ . (2.26)

Here, σi are the Pauli matrices, ∆ is the qubit gap and IP is the qubit persistent
current. ∆ determines the qubit energy at the sweet spot, and IP determines the
slope at which the qubit energy changes with flux, as can be seen in Fig. 2.5b).
IP corresponds to the expectation value of the current of each of the persistent
current states, |0⟩ and |1⟩. Both ∆ and IP are the defining parameters of the
flux qubit.

2.3.1 Flux Qubits for Quantum Annealing
Quantum annealing, as described in Section 1.2.2, is a quantum computing
algorithm where quantum system is continuously evolved from a known ground
state to the ground state of a problem Hamiltonian [Hau19; Alb16]. From this
definition it becomes clear that the energy states are not a good computational
basis, since the system should remain in its ground state¶.

In quantum annealing, each qubit |g⟩ should encode the computational basis.
This is exactly what occurs in the flux qubit in the double well regime, where
the computational states are the persistent-current states |0⟩ and |1⟩.

¶In such a system, there is no single-qubit ground state, but a global system ground state.
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α > 1/2 α = 1/2 α < 1/2

a) Double well b) “Quarton” c) Single well

Figure 2.7: Symmetric potential energy of the flux qubits as a function of φ+ (see text) for
differet values of α at f = 0.5. a) When α > 1/2, a double well exists. b) The quarton regime
occurs at α = 1/2 where the double-well vanishes. c) Single well regime for α < 1/2.

The persistent-current states are very convenient, since at the sweet spot, |g⟩
is an equal superposition of |0⟩ and |1⟩, which is the common initial configuration
in quantum annealing. By increasing the flux over time, the qubits are brought
to either |0⟩ or |1⟩, depending on the algorithm schedule.

The transverse Ising Hamiltonian commonly used in quantum annealing is

Hf =
∑

hX,i(t)σX,i +
∑

hZ,i(t)σZ,i+

+
∑

i<j

Jij(t)σZ,iσZ,j , (2.27)

where hX,i(t) are maximal at the beginning of the schedule and go to 0 at the
end, and hZ,i(t) and Jij follow the opposite behavior. Comparing Eq. (2.27) and
Eq. (2.33), the relation between the hX,Z Ising coefficients and the single-qubit
terms, the relation is

hX,i =
ℏ∆i

2
, (2.28)

hZ,i =2IP,iΦb,i , (2.29)

The ZZ terms in the Ising Hamiltonian can be obtained by coupling two
qubits inductively[Web17; Kaf16], so that the flux in one qubit induces flux in
the other qubits. This interaction depends on IP and the mutual inductance be-
tween qubits. Tunable interactions can be achieved by using a coupler between
the qubits, as will be explained in Section 2.4.

2.3.2 C-Shunted Flux Qubit
The flux qubit shown in Fig. 2.5a) is one of the original flux qubit designs. How-
ever, an improvement was proposed in [Yan15], which consists of the addition
of a shunting capacitance, Csh, followed by the reduction of IP . The so-called
C-shunted flux qubit can be seen in Fig. 2.8a).
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a) C-shunted 
     Flux Qubit b) rf-SQUID c) Fluxonium

Figure 2.8: Circuit schematics of a) C-shunted Flux Qubit, b) rf-SQUID, and c) Fluxonium.
Heavy fluxonium has an extra capacitance, while original fluxoniums do not.

The addition of Csh reduces the sensitivity to charge noise since EC of the
α junction is reduced. Dielectric noise is also reduced as the electric field is
now distributed over a larger area around the capacitor pad, reducing its inten-
sity and coupling more weakly to surface defects. Moreover, it also allows for
better parameter reproducibility since Csh is easier to control compared to the
Josephson junction capacitances.

The reduction of IP with previous devices is also of utmost importance.
Early flux qubits in quantum annealers had IP ≥ 1 µA[Har09b], while in the
C-shunted flux qubit, the current is almost two order of magnitude lower, IP ≈
50 nA. This strongly reduces sensitivity to flux noise, since the decoherence
rate scales with I2P , which significantly increases qubit coherence times.

The Hamiltonian of this flux qubit is equivalent to that of Eq. (2.22) by
changing α → α + Csh/CJ . However, it is common to write the capacitance
term in a matrix fashion

H =
1

2
q⃗TC−1q⃗ − EJ [cos(φ1) + cos(φ2) + α cos(φ1 + φ2 + 2πf)] , (2.30)

where q⃗ is the charge vector, and C is the capacitance matrix.
Finally, the C-shunted flux qubit, can have more than 2 big junctions. In

general, N large junctions can be placed, which modifies the range of values of
α over which a double-well regime exists. This is detailed further in Section 5.2.

2.3.3 rf-SQUID

A rf-SQUID [Sil67] is a somewhat old version of a flux qubit and could be
thought of the simplest of flux qubits, where the large junctions are replaced
by a single linear inductance, as seen in Fig. 2.8b). The Hamiltonian of the
rf-SQUID is

H = 4ECn
2 +

EL

(2π)2
φ2

2
+ EJ cos(φ+ 2πf) , (2.31)

with EC , EL and EJ defined in Eq. (2.15).
The rf-SQUID is important as a historical circuit element, since it was de-

veloped as magnetic detector [Sil67] before being used as a qubit. Moreover,
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it is still very actively operated as a flux qubit and as a coupler in quantum
annealers [Har09b; Web17; Pop24].

2.3.4 Fluxonium
The circuit in Fig. 2.8c) corresponds to the fluxonium qubit [Man09; Ear18].
The fluxonium Hamiltonian is the same as the one for the rf-SQUID (Eq. (2.31)).
However, the parameter regime is quite different. In both EL < EJ , which
implies that there exists a double-well potential which allows for quantum an-
nealing formalism to operate. However, the large inductance in the fluxonium
causes EL ≪ EJ , which results in a sub-nA IP , not making this a suitable choice
for quantum annealing, since the coupling energy J ∝ I2P (see Section 2.4.1).

2.4 Coupling Qubits
Quantum computing relies as much on individual qubit superpositions as in the
coherent interaction between qubits. Qubit coupling can be achieved in many
different flavors: inductive or capacitive, direct or indirect, tunable or fixed, etc.
[Web17; Kaf16; McK16b; Hit21; Men19; DiC10]

The coupling enters in H via a coupling operator. For example, a capaci-
tive coupling between transmons is expressed as the n1n2. Usually, a coupling
Hamiltonian appears as

H = H1 +H2 +Hint , (2.32)

where the first two terms represent the uncoupled qubit Hamiltonians and the
interaction is captured in Hint.

Regardless on how this interaction occurs, the coupling effect on the sys-
tem depends on how it is represented in the two-level qubit description. In
this sense, it is important to differentiate between longitudinal coupling in the
axes of the computational states, σZ,1σZ,2[Web17], and transverse coupling, for
example σX,1σX,2[Cho11]. The former introduces entanglement without energy
exchange, while the second can lead to both excitation swapping between both
systems and entanglement[Maj07].

Directly coupling two qubits, however, may involve an always on interac-
tion that introduces an undesired evolution during the whole algorithm[Roy21].
Another circuit can be added in between the qubits to mediate this interaction.
This coupler element may be tuned so that the interaction is switched off when
desired[Web17].

2.4.1 Coupling in AQC
The coupling required in AQC is more specific than in DQC, where any entan-
gling interaction that can be efficiently performed is valid. In AQC, the target
Ising Hamiltonian forces the coupling requirements[Hau19]. When a transverse
Ising Hamiltonian such as in Eq. (1.3) is needed, a ZZ interaction must be
engineered.
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Figure 2.9: Two flux qubits inductively coupled by a rf-SQUID.

Moreover, in AQC, the coupling needs to be highly tunable, with the possi-
bility of switching it off at the beginning of the anneal, and even changing sign
for different problems. The coupling strength must also be comparable to the
qubit energies, unlike in DQC where it is perturbative. In Eq. (2.27), the J
terms at the end of the anneal must be equal in magnitude to the hZ ones.

The circuit shown in Fig. 2.9 represents two C-shunted flux, coupled by a
rf-SQUID coupler[Har09b], which is an example of a quantum annealing two-
qubit coupling. The bias flux Φb1 in qubit 1 induces flux in the coupler, which,
in turn, induces flux in the qubit 2, resulting in an effective σZ1σZ2 interaction.
The coupled qubit Hamiltonian can be expressed as

H =
∑

i=1,2

(
ℏ∆i

2
σX,i + 2IP,iΦb,iσZ

)
+ ℏg(Φb,1,Φb,2,Φb,C)σZ,1σZ,2 , (2.33)

where i = 1, 2, C correspond to the qubit 1, qubit 2 and coupler respectively.
The coupling g(Φb,1,Φb,2,Φb,C) depends on all the fluxes in the circuit, though.
In practice, g depends mostly on Φb,c near the symmetry point of the qubits.

Equation (2.33) may seem a longitudinal coupling, but it depends on the
state of the anneal. It is only at the end of the anneal, where the σZ terms
dominate over the σX terms, when this is a purely longitudinal coupling.

Although this is the most standard coupling in AQC, it would be desirable
to have more types of coupling. XX coupling for example would lead to non-
stoquastic Hamiltonians [Hit21; Ozf19]. Many qubit couplings, such as ZZZZ
would also be interesting to perform other type of annealing sequences [Men19;
Lec15] and quantum simulations.

2.5 Qubit Control

The two most common ways to control qubits is either by microwave pulses
[Mot09], prevalent in DQC, or flux control [Khe20], the default implementation
in AQC. The microwave pulses at frequencies around ωq drive rotations around
the Bloch sphere (see Section 1.1). Z rotations are usually controlled via soft-
ware phase correction [McK16a]. Two-qubit gates can also be controlled via
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Figure 2.10: a) Transmon capacitively coupled to a λ/4 coplanar waveguide resonator, which is
inductively coupled to the transmission line, from which the qubit driving signal is applied. b)
Circuit schematic of the transmon-resonator-feedline system, where the resonator is modelled
as an LC oscillator.

microwave pulses [Rig10]. Flux control can either be static to tune qubit pa-
rameters[Koc07] or dynamic to evolve the single-qubit and the two-qubit Hamil-
tonian such as in quantum annealing[Nov18].

Qubit control introduces new elements into the circuit structure, such as
control lines and readout resonators. These elements introduce extra noise into
the system as they ultimately couple the qubit with the external environment.
A careful design is to be implemented in order to mitigate the undesired uncon-
trolled interactions, while strong and fast qubit operations can be performed.
The error the control lines introduce is commonly characterized following ran-
domized benchmarking [Kni07], cross-entropy benchmarking [Boi16] or other
gate benchmarking in DQC. In AQC, the control errors are usually integrated
into a flux crosstalk calibration [Dai21].

2.5.1 Driving Qubits with Microwave Pulses

In this section, the transmon control with microwave pulses is developed as an
example on how these drives affect the qubit state. The extrapolation to flux
qubits is conceptually equivalent, although it is more involved as flux qubits are
not a single-variable circuit.

A transmon qubit may be coupled to a transmission line, through which the
control and measurement pulses are transmitted. In Fig. 2.10, this coupling is
not direct, but mediated through a resonator. There are two reasons for that:
first, the resonator acts as a filter in order to protect the state of the qubit from
noise coming from the signal lines; the second reason is that this same resonator
can be used for dispersive readout of the qubit, as explained in Section 2.6.1.
However, antennas to directly drive the qubit without the mediating resonators
are also common. In general, no resonators are needed for driving the qubit.

A usual control pulse is a sinusoidal signal with a Gaussian envelope, which
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drives the transmon to the target quantum state. Mathematically, the pulse

Vd(t) = VE(t) sin(ωdt+ ϕ(t)) , (2.34)

where VE(t) is the voltage envelope, a Gaussian in the simple case, ωd is the
driving frequency and ϕ(t) is the pulse phase. ωd is usually close the transmon
frequency, ωq.

The control drive line is capacitively coupled to the qubit, thus the driving
Hamiltonian is then [Rip22]

Hd/ℏ = ωqa
†a+ δa†a†aa+ iκVd(t)(a− a†) , (2.35)

where the constant κ encapsulates the coupling and transmon details. A trun-
cation to the two lowest-energy levels, leaves the Hamiltonian as

Hd/ℏ =
ωq

2
σz + κVd(t)σy . (2.36)

In the absence of a drive, the free evolution of the qubit is determined by
the first term. In that case, the evolution operator, Û = e−

i
ℏHdrt, will result in

a precession of the relative phase of the states |0⟩ and |1⟩. That is, the phase of
the state |Ψ⟩ = a |0⟩ + beiφ(t) |1⟩, will rotate at speed ωq. Then, it is useful to
move into a frame rotating at this speed so that all modifications of the qubit
state depend on the drive. The Hamiltonian in this rotating frame reads

H′
d/ℏ = −κ

2
VE(t)(Iσx +Qσy) , (2.37)

where I ≡ sinϕ, Q ≡ cosϕ are the in-phase and out-of-phase drive compo-
nents, and we have considered the drive to be at the qubit frequency, ωd = ωq.
Equation (2.37) is the starting point into operating the qubit.

2.5.2 Single-qubit rotations/gates

The choice of phase ϕ in Eq. (2.37) determines which is the axis of rotation. For
example, if ϕ = 0, then the drive will only have a σx component and the system
will rotate around the X axis. Any axis across the XY plane is achievable just
by tuning ϕ. However, this is not a global phase, but the relative phase between
the pulse and the qubit phase, which is completely undetermined. Then, usually
in the first pulse ϕ = 0 is assumed to correspond to rotations around the X axis,
as seen in Eq. (2.37). Subsequent pulses will take into account this initial value
and relative phases will be consistent with it.

A single-qubit rotation has two variables: the rotation axis, σi, and the ro-
tation angle, θ. The latter is determined by the prefactor of Eq. (2.37). κ is
determined by design and fabrication, so it is a constant value, thus leaving
VE(t) the only tunable parameter. A larger rotation angle θ can be obtained
by increasing either the amplitude of the voltage envelope or its duration. In
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Figure 2.11: Rabi oscillations performed with varying amplitude, with the π pulse location
marked. The pulse sequence is shown on top. Data taken from Chapter 4.

general, by using the time-dependent Schrödinger equation, the following ex-
pression is obtained for the total rotation angle

θ(t) = −Ω

∫ t

0

VE(t
′)dt′ . (2.38)

The coupling details encapsulated in κ are set by design, and the pulse VE
is distorted and attenuated along the signal lines before it reaches the qubit.
Therefore, a calibration protocol to drive the desired rotations is needed. A
method to calibrate the signal at the qubit ism implemented using the so-called
Rabi oscillations.

2.5.2.1 Rabi experiment

If the qubit is left at rest and measured, the result should be |0⟩, disregarding
noise and thermal excitations. On the other hand, if a pulse is applied at a
frequency ωd close to the ωq with a determined voltage amplitude and duration
and the qubit is later measured, the results will be |0⟩ with some probability Pg

and |1⟩ with probability 1− Pg. For a varying duration pulse, the resulting Pe

is

Pe(t) =
Ω2

Ω2 +∆2

[
sin2

(√
Ω2 +∆2t

)]
, (2.39)

where ∆ ≡ ωd − ωq is the drive detuning, and Ω is known as the Rabi fre-
quency. The power delivered by the pulse can be also modified by changing the
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amplitude, A, of the driving pulse voltage envelope, VE , instead of the dura-
tion. In both cases, the resulting oscillations, shown in Fig. 2.11, are called Rabi
oscillations.

The Rabi oscillations are the first time-domain experiment performed in
most qubit experiments. Thanks to this experiment, the single-qubit gates are
calibrated and, then, arbitrary rotation pulses can be performed by adjusting
the pulse amplitude to the desired rotation angle θ.

The Rabi oscillations in amplitude as shown in Fig. 2.11, are expressed, for
ωq = ωd, as

Pe(A) = sin2
(
ΩAA

2

)
, (2.40)

where ΩA is the Rabi amplitude frequency. A π pulse is achieved at amplitude
Aπ = π/ΩA, so Pe = 1.

2.5.2.2 X and Y gates

Once Rabi pulses can be controlled, X- and Y -gates may be implemented. By
setting ϕ = 0 in Eq. (2.37), X gates are applied. Instead, with ϕ = π/2, Y gates
are applied. Arbitrary rotations axes are easily performed with the appropriate
relative phase ϕ.

Rabi oscillations provide a calibration for desired rotation angle. By using
Eq. (2.40), for a general rotation θ, the required amplitude is

Aθ =
θ

ΩA
. (2.41)

2.5.2.3 Z gates

Rotations around the Z-axis behave quite differently than the X- and Y -axes.
As explained in Section 2.5.1, the qubit phase rotates around the Z axis in the
laboratory frame. In order to effectively cancel this rotation, the rotating frame
is used. If ωq is modified for some time while staying in this same rotation frame,
a relative phase in the qubit state will accumulate. By the time ωq returns to
its original value, the state would have rotated around the Z axis depending on
the duration and the amount of the frequency deviation.

However, there is a simpler approach to perform Z rotations with no errors,
known as the virtual Z gate (VZ gate)[McK16a]. In Fig. 2.12, the VZ gate
sequence is shown, were a Z-rotation of angle φ is performed by changing the
X- and Y -axes. This is easy to perform experimentally, since the exact definition
ofX- and Y -axes is arbitrary and can be modified by changing the relative phase
of the pulses, as can be seen in Eq. (2.37).

These virtual Z rotations are perfect in the sense that they have no error
associated as no actual pulse is implemented. A VZ gate means adding an extra
phase ϕz on the subsequent pulse definition, so that the pulse quadratures are
modified by I ′ = cos (ϕ+ ϕz) and Q′ = sin (ϕ+ ϕz).
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Figure 2.12: Sequence of a virtual Z gate. The state is rotated an angle φ by modifying the
axis of the Bloch sphere, without performing any operation on the qubit to explicitly rotate
around Z. The state has initially a Z-phase of θ(1). Then, the axis are rotated φ around
the Z-axis (2), which leaves the state with a new relative phase to the new axes (3). When
rotating with the new axis, the state has now a θ − φ Z-phase.
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Figure 2.13: rf SQUID where the small junction has been replaced by a DC SQUID so that
the effective EJ can via controlled via the flux ΦX passing through the junction loop.

2.5.3 Flux Control

The magnetic flux is a common way to control the qubit behavior in flux-tunable
circuits, both in AQC and DQC. Flux control is sometimes static and it is used
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to set many circuit parameters. For example, it is common that qubits such
as transmons or flux qubits substitute one of their junctions by a DC-SQUID,
which consist of two junctions in parallel [Koc07; Har09b]. By modifying the flux
inside the loop an effective EJ(Φ) = 2IC | cos(πΦ/Φ0)| is obtained for identical
junctions. This can be used, for example, to correct for possible fabrication
variations.

In quantum annealing, however, the flux control is the key driving force of
the algorithm. A mathematical description of flux control is simpler than qubit
gates, since the fluxes already appear in the Hamiltonian, such as in Eq. (2.33).
In general, all the annealing algorithms are controlled by the external fluxes, as
expressed in

Hf =
∑

hX,i(Φi)σX,i +
∑

hZ,i(Φi)σZ,i+

+
∑

i<j

Jij(Φi,Φj ,ΦC,ij)σZ,iσZ,j , (2.42)

where Φi corresponds to the fluxes applied to qubit i and ΦC,ij to the coupler
between qubits i and j.

As already noted in Section 2.3.1, the relation between the qubit and Ising
parameters is

hX,i =
ℏ∆i

2
, (2.43)

hZ,i =2IP,iΦb,i , (2.44)
Jij =ℏgij . (2.45)

However, this is an oversimplification, because of the crosstalk. For example, the
flux bias on qubit i, depends not only on Φb,i, but on the flux in the neighboring
couplers, qubits and their control lines.

Moreover, the relation between g and J in Eq. (2.45) depends on the specific
coupler design, the flux biases of the coupled qubits, coupler and neighboring
elements. For large couplings such as the ones required in annealing, the full
coupled system needs to be analyzed as a whole, thus making the circuit analysis
more complex.

One of the most fundamental tasks in AQC is to calibrate the flux crosstalk
[Dai21], encompassing both classical and quantum components. Classical crosstalk
appears from control lines that induce flux not only in the intended components
but also in neighboring elements. Quantum crosstalk corresponds to the effec-
tive interaction between the circuit elements. The phase quantization in each
loop depends on the flux held in each of the neighboring qubits and couplers.

The flux crosstalk calibration consists of solving the following equation

f = MI+ f0 (2.46)

where f is the reduced flux vector with fi = Φi/Φ0 on each circuit loop, f0 is
the reduced flux offset, and the current vector, I, is the current applied on each
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control line. The matrix M is the mutual inductance matrix that describes the
coupling between bias lines and flux loops. Every non-diagonal element on that
matrix represents crosstalk. The crosstalk calibration means finding M, so that
the currents can be designed to output the desired fluxes[Khe20].

2.6 Qubit Readout

Similarly to qubit control, each individual qubit state must be measured, which
requires either a dedicated readout line for each qubit or a way to identify
each qubit in a global measurement line. The latter is the common readout
implementation in superconducting circuits [Bla04], with each qubit coupled to
a resonator with a different frequency, ωr. The resonator response ultimately
depends on the state of the qubit it is coupled to. Each measurement line
contains several resonators coupled to their corresponding qubit. This method
is called frequencymultiplexed readout.

The resonator coupled to the qubit acts also as a filter to reduce the qubit
deexcitation to the feedline, as ωr is highly detuned from ωq. However, this
deexcitation is not fully suppressed, and the qubit can still decay to the feedline
in a process called Purcell decay [Van03]. Sometimes Purcell filters [Set15] are
added to further reduce this decay, which consists of an extra resonator between
the readout resonator and the feedline, further detuned from ωq, acting as a
band-pass filter centered on the Purcell resonator frequency, ωP .

2.6.1 Dispersive Readout

A resonator coupled to a qubit is the most common method of qubit-state
readout[Bla04]. A transmon qubit coupled to a resonator is depicted in Fig. 2.10,
and it is described by the following Hamiltonian

H/ℏ =
ωq

2
σZ + ωr

(
a†a+

1

2

)
+ g

(
σ+a+ σ+a

†) , (2.47)

where the Pauli matrices σZ and σ± refer to the qubit operators, and the ladder
operators a and a† refer to resonator operators. The first and second terms are
the uncoupled qubit and resonator Hamiltonians, respectively. The last term
corresponds to the qubit-resonator interaction, which, when the qubit and the
resonator are resonant, may cause excitation to swap between the resonator and
the qubit. σ+ (σ−) results in an excitation (deexcitation) of the qubit.

If the qubit-resonator interaction is small with respect with the detuning,
|g| ≪ |ωq − ωr|, it can be treated as a perturbation. In this case, the dispersive
Hamiltonian, up to order g/∆, becomes

H/ℏ ≃ ωq

2
σZ + ωr

(
a†a+

1

2

)
+ χσZa

†a , (2.48)
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Figure 2.14: a) Ideal |S21| response of a hanging resonator when the qubit is at |0⟩ and |1⟩.
The difference in resonance frequencies is 2χ. b) Ideal S21 phase response for the two qubit
states.

where chi ≡ g2/∆ is known as dispersive shift. Equation (2.48) can be rewritten
in a more convenient form, disregarding constant terms

H/ℏ ≃ ωq

2
σZ + (ωr + χσZ) a

†a , (2.49)

where now the effect of the qubit-resonator interaction is seen as a change in
the resonator frequency, ω′

r,± = ωr ± χ, whose sign depends on the qubit state.
By probing the resonator, the qubit state can be determined from ω′

r.

2.6.1.1 Measurement pulses

The circuit shown in Fig. 2.10 is so-called a hanging λ/4 coplanar waveguide res-
onator, so transmission is measured, although the signal is technically reflected
from the qubit-resonator system.

In order to perform a measurement of the qubit state, a pulse with a fre-
quency close to ωr is sent through the transmission line. The S21 response of
the resonator ideally follows a Lorentzian shape

S21 = 1− QL/ |Qc|
1 + 2iQL (ω/ωr − 1)

, (2.50)

where QL and Qc are, respectively, the loaded and coupling quality factors. QL

is defined as
1

QL
=

1

Qc
+

1

Qint
, (2.51)

where Qint is the internal quality factor of the resonator, describing internal
losses. Qc is also sometimes referred as Qext, as it corresponds to the external
coupling to the readout line.

An ideal resonator response is shown in Fig. 2.14. The readout can be per-
formed by probing at the frequency ωr,+, which corresponds to |0⟩ in Fig. 2.14.
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Qubit rf-SQUID Resonator

Figure 2.15: Current-based readout. The resonator has a rf-SQUID on the end, whose state
depends on the state of the qubit.

High transmission means the qubit state is |1⟩, and for low transmission the
qubit is in state |0⟩. 2χ defined in Section 2.6.1 can be extracted from |S21|
measurements as it corresponds the difference of resonance frequencies between
qubit in |0⟩ and in |1⟩.

An alternative to amplitude measurement is to read the phase of the pulse,
as shown in Fig. 2.14b). Ideally, by measuring at exactly half distance between
the ωr,+ and ωr,−, the phase difference between both states is maximized. In
reality, the optimal phase frequency for phase measurements has to be cali-
brated. Finally, the signal-to-noise ratio (SNR) is known to be better for phase
measurements than amplitude measurements [Jef14].

2.6.2 Current-based Readout

In AQC, the computational basis is not the energy but the current basis, as
explained in Section 2.3.1. Therefore, the measurements have to be performed
in this basis. A typical way to read out this operator is to replace the capacitor
pad at the end of the resonator in the dispersive readout by a flux-sensitive
element, such as a SQUID.

In Fig. 2.15, a resonator is ended with a rf-SQUID [Nov18]. The distributed
resonator has a current maximum at the location of the rf-SQUID, thus max-
imizing its flux dependence. By careful design, the rf-SQUID-resonator reso-
nance frequency strongly depends on the qubit flux. The rest of the readout
process is identical to the standard dispersive readout.

2.6.3 Quantum-limited Amplifiers

Qubit measurements are typically performed at very low powers, as low as the
single-photon regime[Bla04]. In this scenario, the output signal must be ampli-
fied significantly so that it can be read out by the available instrumentation.

Classical amplifiers provide large amplifications, achieving ∼ 40 dB of am-
plification. However, they also add a considerable amount of noise. Noise tem-
perature, TN , is a usual noise benchmark of amplifiers, and is related to noise
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power, NN

NN = kbTN . (2.52)

The added-noise number, nn, is defined as

nn =
NN

hf
, (2.53)

where f is the photon frequency. nn has units of number of photons, and can be
compared to the amount of photons coming out of the resonator during readout,
which is typically kept of order 1.

The quantum limit of noise is 1/2 for single-mode detectors [Aum20]. How-
ever, real quantum-limited amplifiers have noise temperatures of ∼ 300−500 mK
[Ran21], corresponding to nn = 1 − 2. HEMT amplifiers, on the other hand,
have noise temperatures around 5 K, which correspond to nn ∼ 20 [Aum20].

Without a quantum amplifier, therefore, a correct state determination re-
quires several averages in order to reduce the statistical fluctuations of the noise
to properly identify the signal. Moreover, by averaging many measurements,
no single-shot measurement is possible. This means that the exact measured
qubit state is not accessed, but the averaged qubit population instead, and no
feedback techniques are possible.

The quantum-limited amplifiers are very often designed using superconduct-
ing circuits [Esp21], as will be detailed in Chapter 8. Its behavior, however, is
considerably different to standard superconducting qubit circuits.

2.7 Noise in Superconducting Qubits

The environment couples noise to the qubit similarly than the other circuit
elements,

Hnoise/ℏ = κλÔqÔλ , (2.54)

where the noise operator is represented by Ôλ, while the qubit coupling operator
is Ôq. The coupling strength of the noise κλ depends on the susceptibility of the
qubit to noise, expressed as ∂Hq

∂λ , and the noise intensity at a given frequency.
Ôq determines the qubit-noise coupling type. When a transmon qubit is

coupled to charge noise, Ôq ∝ (a − a†), which, in the qubit basis is expressed
as σY . Such a noise can induce qubit transitions, particularly qubit decay. The
noise that can cause excitations or deexcitations is called transverse noise, as it is
represented in the X or Y axis in the Bloch sphere. If the noise couples through
σZ , then it is called longitudinal noise. Longitudinal noise causes fluctuations
in ωq, thus dephasing the qubit state in the Bloch sphere.

Two main approaches can be taken to decrease noise, either to minimize the
qubit sensitivity to certain types of noise, or to reduce the noise strength. The
former is usually implemented by design[Bro13], while the second one requires
setup and qubit material improvements[Oli13]. Another option is to modify the
qubit circuit so that it couples through a more convenient operator, Ôq.
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Figure 2.16: T1 measurement (sequence on top). Data taken from Chapter 4.

2.7.1 Qubit Decay and T1

Transverse noise at the qubit frequency can cause excitations at a rate Γ1,↑ and
deexcitations at Γ1,↓, such that Γ1 = Γ1,↓ + Γ1,↑. However, the ratio between
them is

Γ1,↑

Γ1,↓
= e−ℏωq/kBT , (2.55)

which at the working qubit temperatures is a very low number, Γ1,↑/Γ1,↓ < 0.1.
Therefore, transverse noise mostly causes qubit decay.

Γ1 is defined as (following Fermi’s golden rule)

Γ1 =
1

ℏ2
|⟨0|∂Ĥq

∂λ
|1⟩|2Sλ (ωq) , (2.56)

where Sλ(ωq) is the noise power spectral density at ωq. If Sλ is white around
ωq, which is a common scenario, the qubit decay is exponential. Quasiparticle
noise, on the other hand, cause Poissonian fluctuations, as their number on the
qubit islands varies randomly. In that case, Sλ is not white and decay is not
exponential[Gus16]. However, in most cases an exponential decay is a good
approximation, and it is defined by the decay time T1 = 1/Γ1

T1 is one of the key qubit coherence benchmarks in a quantum processor,
and it is measured through a standard experimental sequence, called T1 mea-
surement. As seen on top of Fig. 2.16, the T1 sequence consists of a π pulse
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Figure 2.17: Sequence on top. Data is taken from Chapter 4. a) Ramsey measurement. b)
Spin-echo measurement.

in X-axis that bring the qubit population to |1⟩. Then a measurement is per-
formed after a varying time, where the qubit would have decayed to |0⟩. For
white noise, the resulting P1 population follows the form

P1(t) = e−t/T1 . (2.57)

In Fig. 2.16 an example of a T1 measurement is shown. Typical T1 in supercon-
ducting qubits ranges from sub-µs to, so far, as long as ∼ 8 ms [Pop14].

T1 is known to change over time [Kli18] due to the modification of the noise
environment. Thus, several T1 measurements must be performed to obtain a
histogram that correctly described the T1 distribution of values.

T1 measurements are performed in both transmon experiments in Chapter 4
and flux qubit experiments in Chapter 6, and are one of the coherence time
figures of merit of both experiments.

2.7.2 Dephasing and T2

Noise coupled longitudinally at frequencies lower than the qubit frequency ωq,
can cause ωq fluctuations, δωq, captured by the pure dephasing rate, Γφ. De-
phasing is an energy-preserving error, as it corresponds to a loss of information
of the quantum state. As there is no energy loss, dephasing noise can be com-
pensated by proper pulse sequences to invert the dephasing dynamics[Vio98].
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However, qubit decay causes also phase information loss, so that the total
loss of coherence of a superposition state is described by

Γ2 =
Γ1

2
+ Γφ . (2.58)

This expression assumes that both decay functions are exponential. While this
is generally true for Γ1, the dephasing noise is not generally white noise, which
leads to slight modifications of this expression [Fal04].

Γ2 corresponds to a transverse decay time T2, known as decoherence or
dephasing time, which is another coherence time benchmark in superconducting
qubits. T2 is usually measured with the Ramsey measurement sequence, shown
on top of Fig. 2.17 a). Ramsey measurement consists of sending two π/2 pulses
to the qubit with a varying spacing between them. In absence of dephasing or
decay, the final population would always be |1⟩, which happens for very short
times. However, for large times, the qubit is either completely dephased or has
already decayed to |0⟩ (whichever happens first). In both cases, on average, the
second π/2 pulse brings the qubit population to the equator.

A common way to perform a Ramsey measurement is to slightly detune the
two qubit pulses, at ω′

q, as in Fig. 2.17a). This introduces an extra preces-
sion in between the pulses in this new rotating frame, which causes decaying
oscillations, expressed as‖

P1 =
1 + cos2 (∆ωq) e

−t/T2R

2
, (2.59)

where ∆ωq = ω′
q − ωq. These oscillations are easier to fit than the previous

decay, since the amplitude is higher. This technique is also used to correctly
calibrate ωq. When exactly on resonance, there are no oscillations.

Tφ = 1/Γφ can be obtained once T2R and T1 have been measured via
Eq. (2.58). T2R is limited by 2T1, so even when the dephasing time is very
long, the phase loss cannot be pushed further than 2T1, since decay is an inco-
herent process. On the other hand, pure dephasing is a coherent process with
no energy exchange, which can be reversed.

A common way to reduce Γφ is to introduce an extra π pulse in the Y axis in
the middle of the Ramsey sequence, which refocuses the qubit and completely
removes the low frequency noise (see Fig. 2.17b)) that was constant in the time
of the pulse sequence. If the qubit has a constant frequency shift which causes
the qubit to precede at ωq + δωq, then the extra refocusing Y pulse mirrors the
phase accumulation caused by δωq at exactly the middle of the precession. By
the end of the sequence, the qubit is back to the original point. This sequence is
called (Spin-)Echo measurement [Hah50] and outputs a decay time T2E > T2R,
described by

P1 =
1 + e−t/T2E

2
. (2.60)

‖Note that T2 ≡ T2R to differentiate between Ramsey and Spin-Echo decay times
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The difference between the two coherence times, T2E and T2R, provides infor-
mation about the noise nature. If low frequency noise is dominant, T2E ≫ T2R.
Extra pulses can be added in between to further filter the noise [Vio98].

2.7.3 Sources of noise

There are many possible sources of noise in superconducting circuits and many
are not fully understood. Noise understanding and mitigation is an active topic
of research [McR20; Oli13]. The most common sources of noise are:

• Dielectric noise. The materials used in superconducting circuits are not
perfect and contain imperfections that can couple to the qubit. These
defects are modelled as two-level systems (TLS) [Phi87; Mar05], causing
dissipation as they couple capacitively to qubits through electric dipole
interaction. The dielectric noise, also referred as charge noise, is the main
limitation in transmon qubits and flux qubits operated at the symmetry
point. TLS can also lead to flux noise, as stated in the next point. Better
materials like Ta are needed to mitigate this noise.

• Flux noise. Flux noise is of utmost importance in flux qubits, and can be
caused by different origins. The microscopic flux noise generated locally
around the qubit has an almost universal 1/f dependence [Yos06]. The
origin of this noise is suspected to come from unpaired spins on the super-
conductor surface [Sen08]. However, trapped vortices or fluctuations in
the flux control also contribute to this noise [Nsa14]. Thorough material
research and cleaner fabrication is needed to mitigate flux noise.

• Quasiparticles. Quasiparticle cause both relaxation by tunneling through
the qubit junction(s), and charge noise in charge-sensitive devices. At low
temperatures, thermal quasiparticles (qp) should be strongly suppressed.
However, it is known that the effective electronic temperature of the qubit
is higher than the nominal 20 mK of the refrigerator, thus increasing the
quasiparticle density[Zmu12]. Moreover, quasiparticles can be excited by
the microwave tone used to control or measure the qubit [Gol12], and also
by stray radiation, either from the electromagnetic environment or by
high-energy particles [Bar11; Kar19]. Quasiparticle trapping is the best
known mitigation strategy, but is far from established cause [Wan14].

• Resonator photons. The stray photons in the resonator couple to the qubit
via the qubit-resonator dispersive interaction. This causes a shift in the
qubit frequency of δωq ∝ χnphotons. Fluctuations in the number of pho-
tons, thus, causes dephasing noise [Gam06]. These extra photons can also
induce qubit transitions, thus causing decay[Sli12]. Proper thermalization
and filtering helps suppress these photons.

• Purcell decay. The resonator acts as a filter that prevents the qubit to
fully decay by emitting a photon at ωq to the feedline. However, this
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mechanism is not completely suppressed, and qubits may emit into the
resonator mode. Purcell filters [Set15] can help in reducing this decay
mechanism.

• Parasitic modes. An improper microwave environment can create un-
wanted on-chip and off-chip (box) modes that couple to the qubit causing
hybridization and severely damaging qubit performance at the mode fre-
quency [She17; Hou08].

• Control lines noise. The control lines couple the qubit to the environ-
ment, thus introducing noise in the system. This can be flux ohmic noise
and charge ohmic noise, both increasing with frequency[Van03; Ith05]. A
proper coupling of the qubit to these lines needs to be set to establish
the limits on T1 and T2. Improving the filtering can also help to reduce
decoherence from control lines.
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Chapter 3

Superconducting Circuit
Measurements

In this chapter the basic equipment and techniques needed to measure super-
conducting circuits are explained. The experimental setup described here will
be used in the following chapters to run qubit experiments. In Section 3.1, the
fridge setup will be shown, with a special emphasis on the cabling & wiring con-
figuration and the magnetic shielding. Then, in Section 3.2, the measurement
setup including all the external equipment will be presented for the measure-
ments performed throughout this thesis. Also in this section, a brief introduction
to IQ mixing is given, as will be used later in Chapters 4 and 6.

3.1 Setup

A superconducting circuit experimental setup is characterized by the presence of
a dilution refrigerator, which shapes the surrounding environment. The dilution
refrigerator isolates and cools down the quantum the processor and through
its interior the cables connect the processor with the exterior world. In this
section, the setup around the refrigerator is described, and in Section 3.2 the
measurement instrumentation will be added.

3.1.1 Refrigerator

A dilution refrigerator is a complex system whose main role is to cool down a
part of its interior to ∼ 10 − 20 mK or even lower. It does so by the use of
liquid helium. By pumping 4He the refrigerator is pre-cooled to around 4 K
by evaporation techniques. Then, a mixture of 3He and 4He is used, which
can be further cooled down through evaporation methods to < 1 K. Around
870 mK there is a phase separation, with a 3He-rich phase (concentrated) and
a 3He-poor phase (diluted).

63
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Figure 3.1: Refrigerator structure, with some of its most relevant parts. The extra magnetic
shields are also labeled: the superconducting Pb shield at the still and the mu-metal shields:
one thick inside the vacuum RT can and another made of thin mu-metal foil outside the same
can.

The diluted phase is lighter than the concentrated phase, so it will sit on
top. However, a tube can be connected from the lower part, so the 3He-poor
phase can be pumped. The 3He poor has only around 6.6% of 3He at the
lowest temperatures. However, due to the large zero-point fluctuations of the
3He, this isotope has a much higher vapour pressure than 4He. When pumping
the diluted phase, 3He is mostly removed from the mixture. Then, 3He from
the concentrated phase, which is almost pure 3He at low temperatures, moves
towards the diluted phase to restore the equilibrium 6.6% concentration. This
3He transition removes energy from the environment, effectively reducing the
system temperature, which is the driving force of the dilution refrigerator.

The process where 3He removes thermal energy from the environment takes
place at the mixing chamber (MXC) in Fig. 3.1. The quantum processor is
attached to the MXC, so that it thermally stabilizes to ∼ mK. From the
MXC a tube is connected to an upper stage called the still chamber. There,
the diluted phase is pumped in a process similar to alcoholic distillation, which
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a) b)

Figure 3.2: a) Outer mu-metal thin film shield. b) Inner thick mu-metal shield.

gives the name to this plate. The tube connecting the MXC and the still is
thermally connected to the incoming tube bringing the evaporated 3He back
down to the MXC. Both tubes are connected through heat exchangers, which
pre-cool the incoming 3He. The amount and efficiency of this heat exchangers
is one of the main differences between refrigerators that achieve lower or higher
temperatures.

The refrigerator used in this work is a Bluefors SD dilution refrigerator.
The SD fridge has another two flanges: one at ∼ 4 K where the pulse tube that
pre-cools the system at 4 K with 4He is attached, and another one at around
50 K. There are thermomethers at each stage, and heaters at the two lowest-
temperature stages that can be used to attain higher temperatures to perform
temperature-dependent measurements, such as those carried out in Chapter 7.

Finally, the refrigerator does not only cool down the processor, but it also
isolates it. The refrigerator comes with many isolating layers per default. The
larger one is the vacuum can which holds the vacuum inside the fridge, which
can go as low as 10−9 bar. The others radiation shields are intended to isolated
thermically between stages and to reflect incoming thermal radiation from the
exterior. Extra shields can be placed to provide further isolation.

3.1.2 Magnetic shielding

Some types of qubits are not very dependent to flux noise, such as fixed-
frequency transmons. However, flux qubits are specially sensitive to external
magnetic flux. Indeed, flux qubits are so sensitive, that some of them are com-
monly used a magnetic detectors [Ste06].

In order to reduce flux noise effects on flux qubits, extra shieldings are placed
to the refrigerator, whose schematic is shown on Fig. 3.1. A mu-metal thin
lamina is placed outside the vacuum can and a mu-metal thick shield is placed
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a) b)

Outer gold-plated
Cupper shield

Inner Pb shield

Figure 3.3: a) Outer gold-plated copper shield placed at the still stage. b) Top vision of the
gold-platted copper shield with the Pb magnetic shield inside.

inside the same can. The mu-metal is a high permeability material that redirects
magnetic flux lines through its interior, effectively shielding the inside of the
mu-metal can. A full enclosure wiht a narrow slit to run the cables is the most
optimal design for shielding. Mu-metal permitivity is µ = 80, 000− 100, 000, an
order of magnitude higher than other metals. This µ starts to drop at around
230 K, so it has to be placed at room temperature. These mu-metal shields are
shown in Fig. 3.2.

At the still shield a 2 mm-thick Pb shield is placed, as shown in Fig. 3.3.
This magnetic shielding operates differently that the mu-metal one, since at the
temperatures of the still, ∼ 1 K, lead is a superconductor. This shield operates
because of the Meissner effect, as superconductors expel magnetic fields from
their interior.

In the future, yet another shield will be placed at the MXC stage, to isolate it
from all the components placed inside the still and MXC can, such as circulators,
quantum amplifiers, etcẇhich could disturb the qubit.

3.1.3 Cabling & Wiring

The quantum processors, along with other components, must be controlled from
room temperature instrumentation. Apart from the fridge-related wiring, which
operates heaters and thermometers, rf-signals, flux control and DC measure-
ments and operations require proper wiring through the fridge.

3.1.3.1 rf signals

Many qubit operations, such as qubit state measurements and quantum gates,
require rf signals. These signals, either pulses or continuous tones, are typically
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Figure 3.4: Wiring configuration inside the fridge. IN/OUT represent the input and output
lines for rf signals. The cable or wire material is written next to it with XX-YY meaning
YY metal with XX coating for wires or outer conductor for cables. Phbz stands for phosphor
bronze, LBP is Low Band Pass filters and LT(RT) HEMT are the low temperature (room
temperature) HEMT amplifiers. The DC flux control is only shown in flux dependent mea-
surements.

in the 1 − 10 GHz range. The cables involved in these signal must, therefore,
have low losses in this whole range. Usually < 20 dB S11 reflection is a good
benchmark to cable quality.

The cables used to route rf-signal are coaxial cables assembled in-house
with different materials, depending on the exact location, which can be seen
in Fig. 3.4. The rf lines are divided into input and output lines, depending on
the direction of the signal. There is only one output line, since there is only one
amplifier, required to read out the outgoing signals. The rest of lines are input
lines, which allow to control different qubit and couplers or to perform different
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experiments at the same cooldown.

The input lines are heavily attenuated so that the signal can arrive at the
single-photon level at the quantum processor. These attenuators also thermally
connect the lines to the refrigerator flanges, which reduces the noise to the
temperatures of that flange. A total of ∼ 50 dB attenuation occurs inside the
fridge due to these attenuators, while further attenuation is provided by the
cables, the imperfect connections and the extra outside attenuation.

The cables going from the room temperature (RT) until the 4K stage are
made of CuBe, while the cables between the 4K stage until the MXC are made
out NbTi. The latter is superconducting at temperatures below 7 K. While
superconductors are very low loss materials, NbTi here is mainly used due to
the poor thermal conductivity as a superconductor. The NbTi cables effectively
decouple thermally the 4K, Still and MXC stages. The flexible cables inside the
mixing chamber are made out of copper, as inside the MXC thermal conductivity
is welcomed to connect all the elements to the flange.

At the MXC, the signals are filtered with low-pass filter (< 8 GHz) to remove
high-frequency noise. The signal is then routed into the device. The outgoing
signal from the device is then routed to two circulators, working in the 4−8 GHz
regime. The circulators provide directionality so that there is little entering the
device from the outgoing line, each giving −17 dB to signal in opposite direction.
Then, this signal is further filtered and routed through the output line.

If more than one experiment is to be performed during the same cooldown,
switches are needed to route only one of the signals to the output line. If there
were more amplifiers, this would not be needed and each experiment could have
a dedicated output line. The switches receive two signals as input and only
allow one of them to go at the output. This is performed via DC control with
a standard voltage or current source.

The output cable from MXC to the still is also made out of NbTi. In between
the still and the 4 K flange, a low temperature (LT) high-energy mobility tran-
sistor amplifier (HEMT) is placed. The HEMT amplifies the signal by about
40 dB in the 4− 8 GHz range. The cable below the HEMT is made from NbTi
while the one above connecting to the 4 K plate is made from Cu. This way, the
HEMT amplifier is thermally connected to the 4 K flange and decoupled from
the still. There is a 1 dB attenuator before the amplifier to suppress possible
standing waves in the lines, since neither the circulators nor the amplifier are
well-matched to the line. This 1 dB attenuation also serves for further reducing
the possible input from the amplifier to the qubit. The cables from 4 K to RT
are made from silver-coated CuNi.

The output line is further amplified with another RT HEMT, that pro-
vided another 40 dB amplification, and a Pasternack amplifier which amplifies
∼ 20 dB. The cables outside the fridge until the instrumentation are made from
rigid Cu. These provide a stable setup, so that the specific cabling configuration
is controlled by more flexible cables.
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3.1.3.2 Flux Lines

Annealing sequences require dynamic flux control. This is performed by time-
varying currents, which can be routed through the same cables as the rf signals
described in Section 3.1.3.1. However, usually no more than 1 GHz is needed
for these sequences, so other cables can be used with lower high-frequency re-
quirements. The annealing sequence can be routed through more flexible and
compact cabling.

Static flux control is performed via DC signals, which are not modified during
a sequence. These DC lines only require to transmit DC signals. As can be seen
in Fig. 3.4, the cables consist of twisted phosphor bronze pairs, which go all
the way from the RT flange to the MXC without any attenuation. However,
the lines are thermally connected at every stage in the refrigerator to remove
thermal noise and for proper thermalization.

In this setup, the magnetic flux is generated by current passing through a
coil. Since this is very close to the qubit, the potential thermal heat generated
from the charge carriers could heat the qubit, thus causing excitations. More-
over, the ∼ 5− 10 mA used in the coil to generate the required magnetic flux,
if passed through resistive wires that connect the local flux line, could heat the
cryostat so much that it could not be operated.

Then, the wires from the MXC to the coil and in the coil itself are made
from NbTi, the same superconductor material from the rf-signal cables. The
wire from the MXC to the coil has CuNi cladding and the coil wire has Cu
cladding over the NbTi core. CuNi has lower thermal conductivity, which helps
to separate stages.

3.1.3.3 DC Measurement & Control Lines

In order to perform DC measurements, the same phosphor bronze wires of Sec-
tion 3.1.3.2 are used. However, in this case the superconducting end is not
needed. DC measurements are performed at temperatures above the supercon-
ducting state of the material or at the edge in order to spot the superconducting
transition.

The control of components such as the microwave switches is performed via
these same phosphor bronze wires. However, in this case, there is no need to
use twisted pairs and single wires could be used, since noise is not important
for this find of control.

3.1.4 Grounding & Earthing
Grounding and earthing are two different, yet similar, concepts. Earthing refers
to connecting the setup to the physical earth ground and it is mainly used in
case of sudden charges outburst to provide a safe path to a lower (zero) voltage.
Grounding, on the other hand, means providing a common voltage reference
between all instruments and a common electrostatic mass providing a stable
reference electric potential. The largest this mass, the better, since that implies
larger electrostatic capacitance.
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Figure 3.5: Grounding and earthing scheme used in the experiments. The instruments are
connected to a common Cu bar that is then connected to the large cryostat mass that provided
the grounding reference. All these connections are done via a braided Cu cable. Then, the
cryostat mass is earthed to a dedicated earth rod via another Cu bar to provide a safe place
to the earth ground for sudden discharges.

In order to provide a good earthing, there is a dedicated earth ground rod for
the superconducting circuit experiments. This ground rod is intended to isolate
the instruments from nearby labs, such as a mechanichal workshop with very
power-demaning machines. This earth rod is connected to the common ground
(described below) through a copper bar, which should be the only connection
to this clean earth ground.

For proper grounding, all instruments’ chassis are connected to the common
ground. The common ground provides a good potential reference with a large
mass. This electrostatic mass is defined through the refrigerators, instruments,
and rack chassis. The cryostat mass, being the biggest, is the one providing this
stable potential reference.

The full grounding setup is depicted in Fig. 3.5. All the instruments are
connected to a common copper bar in the instrument rack with braided cables.
These cables are used because they have very low resistance. The copper bar
is connected to the cryostat mass. Then, the cryostat mass itself is linked to
another copper bar which then connects to the earth’s ground. This last link
provides a safe path for electrostatic discharges and should be the only path to
the earth’s ground.

Furthermore, the power provided to the instruments is filtered to remove
transients, spikes, and harmonic (caused by engines, machines, switches...) from
the ideal sinusoidal of 50 Hz.

Ideally, the instrumentation used for the experiments should be decoupled
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Figure 3.6: Spectroscopy measurement setup, consisting on a VNA and a rf-source. The low-
band pass filter filters out frequencies below 8 GHz

from more noisy equipment, such as the refrigerator gas handling system controls
or the computers. While the formed is achieved through dielectric interruption
between the metallic pieces, the second has not been implemented yet. Thus, for
instance, the computer is still connected to the Keysight PXI rack through the
PCIe cable, which introduces noise in the setup. Moreover, fridge temperature
spikes have been correlated with large machinery being switched on/off in the
neighbouring lab. Thus, further improvement must be performed in this regard.

3.1.5 Software

The instruments have been controlled with Labber software, a Keysight owned
software specifically aimed at superconducting qubit experiemnts. This software
allow to control all the different instruments and to generate the pulse sequence
for the experiments. By using this software, most calibration can be performed
without scripting and automatic documentation of the instrument parameters
is saved.

However, scripting is required to generate more complex sequences, such as
the ones commented at Section 4.4 on the Universal Approximant algorithm.
In that case, Python scripts are written as well by making use of the Labber
API. Direct control of the instruments throughout SCPI commands or their
Python drivers has been also used to perform minor tasks or to debug the
instrumentation. Moreover, several new Labber drivers have been developed to
add new instrumentation to the setup.

3.2 Measurements

The measurement setup described in this section corresponds to the instrumen-
tation and wiring outside the refrigerator, which can be usually modified during
the same cooldown.
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3.2.1 Spectroscopy Measurements
The quantum processor is usually first characterized in the frequency domain.
These measurements provide initial characterization of the frequencies and en-
ergies of the qubits, resonators, and couplers. Obtaining these parameters with
spectroscopy is simpler and faster than with time-domain measurements.

A Vector Network Analyzer (VNA) is the main instrument for spectroscopy
measurements. This instrument sends a continuous radiofrequency tone and
reads the reflected and transmitted scattering parameters, Sij , in phase and
amplitude. The frequency and power range depends on the specific device, but
should operate in between the 1−10 GHz to be used in cQED experiments. The
VNA used in the experiments is an Agilent E5071B VNA Network Analyzer,
which works in the range 300 kHz− 8.5 GHz.

The signal sent with the VNA is typically attenuated with external attenua-
tion, so that the few-photon level is obtained at the device. Some measurements
such as the punchout measurement described in Section 4.2.2, require higher
powers, so some attenuation may be removed.

For experiments that require two tones, such as the qubit spectrum obtained
with two-tone measurements (Sections 4.2.2 and 6.3), a rf-source is added to
the setup. This rf-source sends a continuous tone at GHz frequencies, that is
combined with a rf splitter with the VNA tone. Usually the rf-source tone is
sent to excite the qubit while the VNA is probing the resonator response. This
rf source is a Rohde&Schwarz SGS100A SGMA RF source.

3.2.2 Time-domain Measurements
In order to perform quantum algorithms, a precise time control is needed on the
qubits. This requires different instruments than for spectroscopy instruments.
The measurement setup is shown in Fig. 3.7. The signals sent into the fridge are
now pulses instead of continuous tones, so an Arbitrary Waveform Generator
(AWG) is needed. In our setup, it corresponds to Keysight M3202A PXIe AWG,
which is located inside a M9010A PXIe Chassis. Two different AWG modules
are used, one for the qubit and another for the readout pulses.

The pulses are IQ modulated, which implies that an arbitrary modulated
pulse is generated by two different pulses which are 90 degrees shifted: the
in-phase (I) and the quadrature (Q) components. The general modulation is

A(t) sin(ωt+ φ(t)) = AI(t) sin(ωIQt) +AQ(t) cos(ωIQt) , (3.1)

where A is the total pulse amplitude, AI and AQ the I and Q amplitudes
respectively, ωIQ is the modulation frequency and φ the phase. IQ modulation
allows for complete amplitude and phase control obtained only with amplitude
modulation, which is much easier to achieve precisely with the instrumentation
used.

However, the AWG has a 1 GS/s sampling rate, which cannot directly output
the necessary GHz pulses. Therefore, these pulses are upconverted with an IQ
mixer. An IQ mixer is a 4-port component that receives the I and Q quadratures
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Figure 3.7: Time-domain measurement setup. The AWG generates the IQ signals of the
qubit (ωQ) and resonator pulses (ωR,in). The qubit pulse is upconverted by the internal
IQ mixer of a rf source. The readout pulse is upconverted with and IQ mixer and a tone
generated by another rf source. This same rf-source is used to demodulate the readout signal
coming from the fridge (ωR,out). The ωR,out signal is filtered and amplified before and after
the downconversion, and then read out by the digitizer. A stable reference signal generated
by a Rb-stabilizer source is distributed to all equipment, daisy-chained. The low-band pass
filter filters out frequencies below 8 GHz, and the band-pass is centered at the modulation
frequency, which is 70 MHz.

of the desired pulse and a continuous rf tone at another intermediate frequency
ωLO (LO: local oscillator). The resulting pulse (RF) has the shape of the IQ
pulse and may output either of the frequencies ωLO±ωIQ. The sign depends on
the exact configuration of the pulses.

IQ mixer upconversion works by receiving I(t) and Q(t) signals at the I and
Q ports, with any kind of modulation. On the LO port, a continuous tone is
received, LO(t) = cos(ωLOt). The resulting pulse, Vd, can be expressed as

Vd(t) =I(t) cos(ωLOt) +Q(t) cos(ωLOt+ π/2)

=I(t) cos(ωLOt)−Q(t) sin(ωLOt) (3.2)

The desired pulse should have a shape

Vd(t) = V0s(t) sin(ωdt) (3.3)

where V0 is the pulse amplitude and s(t) the envelope function that shapes the
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I(t) Q(t)

LO(t) = cos(ωLOt)

VD(t) = V0s(t)cos(ωRFt)

I Q
LO

RF

Figure 3.8: IQ mixer upconversion scheme. The input I and Q signals at ωIQ are upconverted
with the rf source at ωLO to the resulting ωRF. ωRF = ωLO ± ωIQ depending on the I and
Q signals. The resulting voltage has a V0 amplitude and an envelope functions s(t) define by
the I and Q shapes.

pulse. In order to obtain Eq. (3.3), these are the I(t) and Q(t) needed

I(t) =V0s(t) sin(ωIQt) , (3.4)
Q(t) =− V0s(t) cos(ωIQt) . (3.5)

The sign choice in the Q(t) expression is what determines that the resulting
frequency is ωd = ωLO + ωIQ.

The qubit pulse is upconverted at ωQ at the internal mixer of the Ro-
hde&Schwarz SGS100A SGMA rf source, which has an IQ mixing option. The
readout pulse, on the other hand, is upconverted to ωR,in via an external IQ
mixer with the LO generated by another rf source of the same model without
the IQ mixing option. Both signals are then combined via a Splitter/Combiner
and routed to the Input port of the refrigerator in the same wire. The schematic
is depicted in Fig. 3.7.

The readout signal coming from the fridge is further amplified and the high-
frequency noise filtered. Then, it is downconverted with an IQ mixer working in
the reverse way. In this situation, the IQ mixer receives the RF signal and the
LO tone, and it outputs the two demodulated I and Q quadratures. The same
LO used for upconverting the tone has to be used for downconverting. Other-
wise, a phase drift between the LO sources would cause a continuous phase drift
on the resulting readout signals, thus forbidding phase measurements. Once the
signal is downcoverted it is further amplified and filtered with 70 MHz band pass
filters around the demodulated frequency, which in the experiment throughout
the thesis was ωIQ/2π = 70 MHz.

The digitizer used is a Keysight M3102A PXIe digitizer that is located in the
same chassis as the AWG. This is convenient, since very precise timing control
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DC source
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a) Flux Control b) DC Measurements
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IOUT
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Figure 3.9: a) Static flux control achieved through a filtered voltage DC source. b) Resistance
measurements are performed via a Sourcementer. It outputs a current Iout and reads the
voltage drop Vin so resistance can be computed.

is needed to trigger both with the desired detuning. The whole pulse sequence
takes a few µs to travel from the AWG to the Digitizer. The digitizer then
receives the I and Q signals at the modulation frequency ωIQ. The signals are
then integrated in order to receive the complex magnitude, A = I + jQ. If the
readout is performed by magnitude, |A| =

√
I2 +Q2 is used; if it is a phase

measurement, φ = arctan(Q/I) is used instead.
All the instruments are referenced to a Rubidium reference source that out-

puts a 10 MHz-stable reference tone. This is required to keep the internal clocks
of the instruments referenced to the same stable clock, otherwise phase drifts
would damage the experiment performance.

3.2.3 Flux Control

The static flux control is obtained via a Yokogawa GS200 DC Source. This in-
strument outputs a very stable DC voltage or current. The flux can be obtained
by a fixed I which will generate the magnetic flux when turning in the coil in
Fig. 3.4. The Yokogawa is a floating source, so the current comes back to the
instrument without running through the fridge ground.

In the setup, the flux is generated via a stable voltage source. This DC volt-
age is first filtered with a LBP filter below 10 MHz and then further filtered with
a home-built RC filter with a cutoff below 50 Hz, as can be seen in Fig. 3.9a).

Dynamic flux control, not used throughout this thesis, would be attained
with similar structure as microwave pulse driving shown in Fig. 3.7. However,
in that scenario, only the AWG would suffice, since required frequencies are not
so high. Moreover, IQ modulation would not be required, and the digitizer is not
used for flux control. Thus, it would consist of just AWG channels outputting
the flux sequences to the required fridge input ports.



76 CHAPTER 3. SUPERCONDUCTING CIRCUIT MEASUREMENTS

3.2.4 DC measurement and Control
The four-probe measurements performed in Chapter 7 use a Keithley 2634B
Source Measurement Unit, which can output and read very low voltages and
currents. The measurement is performed by generating a current and reading
the voltage drop. In order to remove the cable resistance, an I−V curve is taken,
and the resistance is obtained by fitting the response to a linear regression. The
setup can be seen in Fig. 3.9b).

DC control of equipment, such as the switches, only requires discrete voltages
of > 12 V at very occasional times. This can be performed via power sources
used to power amplifiers or with the same equipment used for generating flux
or DC measurements.



Chapter 4

Transmon Qubit Experiments
Adrián Pérez-Salinas, David López-Núñez, Artur García-
Sáez, P. Forn-Díaz, José I. Latorre ∗

4.1 Introduction

In this chapter, the experimental implementation of the Universal Approximant
(UA) algorithm in a transmon qubit is described. This experiment paved the
way for all the following experiments in the IFAE QCT group, thus many tech-
niques are initially developed during this chapter work. These techniques are
thus used throughout the rest of the thesis, and also served as the basis for
other works in the QCT group. For this reason, Section 4.2 serves as an intro-
ductory guide on how to use a superconducting quantum computing setup and
the instrumentation required.

In Section 4.3, the quantum Universal Approximant theorem is sketched and
its quantum algorithm implementation presented. This work was developed to-
gether with other members of the Quantic group at BSC and is already published
[Pér21]. The theoretical demonstration is overviewed here, although the work
was fully developed by Dr. Adrián Pérez-Salinas and Prof. J.I. Latorre.

The experimental implementation of the UA algorithm is explained in Sec-
tion 4.4, and the result is discussed in Section 4.5. Final conclusions are given
in Section 4.6.

4.2 Controlling and Characterizing a Transmon
Qubit

This section describes how to set up a quantum computing experiment using
superconducting qubits ready to perform algorithms. This section is written

∗Part of the contents of this chapter have been published in Phys. Rev. A 104, 012405
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a) Transmon Circuit b) Qubit-cavity

Figure 4.1: a) Transmon circuit schematic. b) Image of the opened cavity with the transmon
chip inside.

as an introductory tutorial on how to use a quantum computing setup and the
instrumentation required.

In Section 4.2.1, the transmon-cavity system and the setup used in the ex-
periment are presented. Then, in Section 4.2.2 the basic qubit-cavity system
properties are obtained with spectroscopy measurements. Time-domain mea-
surements are described in Section 4.2.3, and Section 4.2.4 develops further on
time-domain calibration and optimization.

4.2.1 System & Setup

To initiate superconducting qubits experiments, a 3D transmon qubit was used
[Pai11], arguably the simplest and most reliable design of superconducting qubit.
This simplicity and robustness is very convenient to characterize any supercon-
ducting qubit experimental setup.

A 3D transmon consists on a transmon qubit coupled to the lowest mode
of a superconducting cavity. The transmon is formed by a single Josephson
junction shunted by a parallel plate capacitor (see Fig. 4.1 a))[Koc07]. The
superconducting cavity is made of aluminum, and the transmon is placed at its
center, as can be seen in Fig. 4.1 b).

The cavity can be approximated as a rectangular cavity of width a (x̂),
height b (ŷ) and length d (ẑ), with d > b > a. In this case, the fundamental
mode electric field, E⃗, is

E⃗ = x̂E0 sin
πy

b
sin

πz

d
, (4.1)

with E0 the electric field amplitude. At the center of the cavity the electric field
of the fundamental resonant mode is maximal, thus maximizing the coupling
with the transmon, that is placed at the cavity center. Most ofE⃗ stays in
vacuum, minimizing dielectric losses from the substrate, which is typical in
qubits coupled to coplanar waveguide (CPW) resonators [Gao08; OCo08].
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Figure 4.2: Cavity spectroscopy with sequence on top. The resonance peak is clearly seen,
f0
r = 7.895 GHz, and some qubit thermal population lead to a second peak, f1

r = 7.893 GHz

The cavity resonance mode loaded quality factor, QL, is defined as

1

QL
=

1

Qint
+

1

Qext
, (4.2)

whereQint andQext are the internal and the external quality factors respectively.
If Qext ≫ Qint, internal losses dominate the quality factor, meaning that the
cavity mode is undercoupled to the external circuitry. On the other hand, the
cavity is said to be overcoupled when Qext ≪ Qint.

The cavity is coupled to the external world via two ports, input and output.
In order to provide good directionality, the input port is undercoupled compared
to the output port. This configuration cause most of the signal that enters into
the cavity to exit through the output port. Typically, Qin

ext/Q
out
ext ≈ 10, which

causes Pout ≈ 100Pin, where Pout and Pin are the input and output power at
the cavity, respectively.

4.2.2 Spectroscopy Measurements

Spectroscopy measurements provide the initial characterization of the qubit-
cavity system. These measurements are performed in the frequency domain, and
typically only require steady-state frequency and power sweeps. Spectroscopy
measurements can be performed in a relatively fast manner, since they do not
require precise timing control. This initial characterization allows one to start
time-domain measurements, such as Rabi oscillations (Section 2.5.2.1), with a
prior knowledge of the qubit and cavity properties.
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Figure 4.3: a) Punchout measurement (Sequence on top). The power of the readout pulse
until the effect of the qubit is vanished. The frequency on top of the plot corresponds to
the bare resonance, while the lower corresponds to f0

r . b) Two-tone spectroscopy (Sequence
on top). The qubit frequency is observed at ωq = 4.81 GHz. When the qubit tone power
is increased, an extra dip is observed which corresponds to half the frequency of the 0 − 2
transition, ω02/2 = 4.66 GHz.

A frequency scan of the system returns the cavity transmission S21, defined
as

S21(f) =
QL

Qext

1

1 + 2jQL

(
f−fr
fr

) , (4.3)

where fr is the resonant mode frequency. The magnitude response, |S21|, is
shown in Fig. 4.2. The response has a peak at f0r ≈ 7.895 GHz, since the signal
is admitted at the cavity at this frequency and exits through the overcoupled
output port. For an off-resonant tone, most signal is reflected, thus significantly
lowering |S21|.

This is a simple experiment which only requires sending a weak tone to the
cavity while monitoring the transmitted signal. Moreover, the same aluminum
cavity can be used to test different qubit chips.

The resonance measured in this experiment, if performed at low power, does
not correspond to the bare aluminum resonant frequency, but the displaced
resonance due to the dispersive interaction with the qubit (see Section 2.6.1).
Indeed, in Eq. (4.1), a small second peak at f1r ≈ 7.893 GHz to the left of the
main peak is caused by the thermal population of |1⟩ state. The difference in
frequency between these two peaks yields the dispersive shift,

f0r − f1r =
2χ

2π
= 1.5MHz , (4.4)

where χ = g2/∆, with g being the qubit-cavity coupling strength, while ∆/(2π) =
fq − fr is the difference between cavity and qubit resonance frequencies. The
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Figure 4.4: Transmon lowest energy level structure

limit of the dispersive regime is set by the critical number of photons, ncrit =
∆2/(4g2). At ncrit the photon-induced energy splitting of the qubit states,
2g

√
n, is equal to ∆, which breaks the dispersive approximation [Bla04].

If this same measurement is performed at higher powers, above ncrit, the
bare cavity resonant frequency will be measured. In this scenario, the energy
difference of the dressed states |N⟩ and |N + 1⟩ is equal or larger to the cavity
linewidth, so the system becomes harmonic, effectively punching out the qubit.

In Fig. 4.3 a so-called punchout measurement is shown, consisting of per-
forming a power sweep of a cavity resonance trace. The change in the cavity
resonant frequency at high powers is the benchmark of the presence of a qubit
in a cavity. By performing this measurement, f0r at low powers is found to be
7.8945 GHz ≡ fr, while f ′r = 7.8902 GHz appears at high powers.

In order to obtain the qubit frequency, fq ≡ f01 and the qubit anharmonic-
ity∗, δ ≡ f12−f01, a two-tone spectroscopy-type measurement is required. This
experiment consists of sending a low-power tone at fr, corresponding to the
resonance peak in the low power part of the punchout measurement. Simul-
taneously, a second tone whose frequency is swept is sent to the qubit-cavity
system to find fq. Once fq is found, the qubit is in a driven steady state, with
half its population in |0⟩ and the other half in |1⟩. Consequently, the peak in
S21 transmission is reduced, effectively showing a dip in the qubit frequency
scan at fq.

Figure 4.3 b) shows the two-tone spectroscopy measurement performed at
different powers. At low powers, the qubit frequency is found to be fq =
4.81 GHz. Increasing the power shows a second dip at a slightly lower frequency.

∗The common symbol α for anharmonicity is not used, since this will lead to confusion
when flux qubits are introduced, since α is saved for the ratio between junction areas. More-
over, the anharmonicity will be now defined in frequency, unlike previous chapter which was
in angular frequency.



82 CHAPTER 4. TRANSMON QUBIT EXPERIMENTS

Figure 4.5: Qubit coherent control. Both figures show data points on grey and fits on dashed
blue line. Pulse sequence is shown on top. a) Rabi Oscilations show qubit coherent control,
while serving as a calibration for the π pulse and to set the |0⟩ and |1⟩ readout points. b)
T1 Measurement. T1 = 17.9 µs is long enough for performing many gates, as π-pulse time is
Tπ = 30 ns.

This peak corresponds to f02/2 (see Fig. 4.4), as it is a two-photon process from
|0⟩ to |2⟩ which, since it is less probable than a one-photon process, requires
higher powers to excite. Anharmonicity can be obtained by δ = 2 (f02/2− f01).
For this experiment, f02/2 = 4.66 GHz which leads to δ = −324 MHz.

4.2.3 Qubit Coherent Control and Characterization

4.2.3.1 Rabi oscillations

Prior to observing Rabi oscillations, a preliminary pulsed readout of the cavity
was performed. The readout pulse was set to 2 µs long, larger than cavity rise
time, τ = 0.507 µs. The pulse has fIQ = 70 MHz modulation frequency, chosen
to avoid 1/f noise that would have been present if homodyne detection was
performed at 0 Hz modulation. The specific value of the fIQ was chosen as it
lies well within the bandwidth of the AWG used in the experiment.

Rabi oscillations (see Section 2.5.2.1) were performed with a 30 ns Gaussian
pulse envelope at 70 MHz modulation frequency. The pulse amplitude is swept
in order to rotate the qubit in the Bloch sphere. The amount of qubit state
rotation is proportional to the energy delivered to the qubit, φ ∝

∫ t

0
V0s(t

′)dt′,
where V0 is the pulse amplitude and s(t′) the time envelope. Rabi oscillations in
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amplitude were characterized instead of time-domain oscillations since fixing the
pulse duration time allows setting the same timing control when many pulses
are applied, such as in the Universal Approximant algorithm (see Section 4.4).
The pulse sequence and the Rabi oscillations are shown in Fig. 4.5 a). It is worth
stating that these oscillations were the first-ever observed on a superconducting
qubit in Southern Europe.

With Rabi oscillations, the readout signal amplitude, Aread is mapped to |0⟩
and |1⟩ states. The signal received when no qubit pulse is sent corresponds to
the qubit in |0⟩, while the lowest amplitude of the oscillations corresponds to
|1⟩. A π-pulse is also determined by Rabi oscillations, as seen in Fig. 4.5 a).
The precise determination of these quantities is obtained by fitting Aread to

Aread = ARabi cos
2 (ΩApulse/2) + c , (4.5)

where Apulse corresponds to the applied qubit pulse amplitude and the rest are
fitting parameters. Equation (4.5) is then compared to the Rabi oscillations
formula

Pe(t) = sin2
(
Ωt

2

)
, (4.6)

where Ω is the Rabi frequency, common in both expressions. Then, the popula-
tion of the ground state is obtained by Pg = (Aread. − c) /ARabi, and Pe = 1−Pg.
A π-pulse amplitude is defined as Apulse,π = π/Ω, so the qubit population is
rotated 100% to |1⟩.

Up to this point, it is assumed that the initial qubit state is exactly |0⟩, with
no initial thermal population, and the Rabi pulse is exactly at fq, which both
cause complete Rabi oscillation between |0⟩ and |1⟩. A closer look on a more
realistic scenario with imperfect state preparation and inexact drive parameters
will be taken at Section 4.2.4.4 and Section 4.2.4.2.

It is important to note that, due to the lack of a quantum limited ampli-
fier, no single-shot readout capability was available in this experiment. Thus,
the measurement results consisted of averaging multiple single shots, typically
5, 000, although it could be as high as 50, 000 when smooth data was desired.

4.2.3.2 Coherence time characterization

After calibrating the π-pulse and the readout of the state population, the qubit
coherence times characterization is performed (see Sections 2.7.1 and 2.7.2).
First, T1 is measured, which indicates the relaxation time of the qubit from the
excited state to the ground state. The T1 pulse sequence and the results can
be seen in Fig. 4.5 b). T1 is obtained by fitting the population to a decaying
exponential, Pe(t) = e−t/T1 , which for the qubit in the 3D cavity resulted on
T1 = 17.0 µs. Compared to the 30 ns pi-pulse duration, T1/Tπ ∼ 103, allowing
to perform multiple gates before decay dominates.

For the dephasing time characterization, a Ramsey measurement is per-
formed. Ramsey measurement consists of sweeping the spacing between two
consecutive π/2 pulses applied to the qubit, which led to T2R = 8.2 µs, as seen
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Figure 4.6: Qubit coherence times. Both figures show data points on grey and fits on dashed
blue line. Pulse sequence is shown on top. a) Ramsey T2R measurement. The value of
T2R = 8.2 µs shows that the qubit coherence is not T1 limited. b) Echo T2E measurement.
In the sequence it is specified that echo pulse is in the Y -axis, unlike the other pulses, along
the X-axis, unless otherwise noted. The value of T2E = 11.2 µs is still far from 2T1, which
indicates the high frequency noise is not negligible.

in Fig. 4.6 a). These pulses have the same shape and duration of the π pulses
used for T1, but the amplitude is halved. If the pulse frequency is slightly de-
tuned from fq, the resulting trace will be a decaying sinusoidal. T2R is obtained
by fitting the data to

Pe = cos2(δft)e−t/T2R , (4.7)

where δf = fpulse − fq. The Ramsey decay time is defined as 1
T2R

= 1
2T1

+ 1
Tφ

,
where Tφ is the pure dephasing time. Since T2R < 2T1, it shows that T2R is not
limited by decay, but by dephasing time, Tφ = 10.8 µs.

The spin echo sequence adds an extra Y -axis π-pulse in between both π/2
pulses from the Ramsey sequence. The π-pulse suppresses low-frequency de-
phasing noise by mirroring the state along the Y -axis at the middle of the
sequence. T2E is obtained by fitting

Pe(t) = 1/2 + e−t/T2E/2 . (4.8)

As expected, T2E = 11.2 µs, is higher than T2R, but still lower than 2T1, which
indicates that higher frequency noise dephasing still affects this decay. Both
the spin Echo sequence and the measured results can be seen on Fig. 4.6.
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Figure 4.7: Readout and control pulse calibration. Both figures show their pulse sequence on
top of the main graph. a) Readout Power Calibration. A pulse identical to the readout pulse is
sent at the same time as the qubit drive. Increased power shows the dispersive shift of the qubit
frequency and, at high enough powers, the tone starts to induce undesired qubit tranistions
to higher levels. The red dashed line marks the safe amplitude used in the experiments. b)
Qubit frequency calibration. Ramsey fringes consist of the Ramsey measurement repeated at
different qubit drive frequencies. Qubit frequency can be targeted to sub-MHz levels with this
sequence.

The coherence times obtained are already sufficient for the goal of implement-
ing the Universal Approximant algorithm, even when no further optimization
has been applied to the readout and control pulses. However, there are still
several improvements that need to be implemented in order to enhance readout
efficiency and reduce pulse errors, which will be covered in the following section.

4.2.4 Control and readout optimization

4.2.4.1 Readout Calibration

All the measurements in this chapter have been performed in magnitude, which
means that the qubit state is determined by |S21| from Eq. (4.3). The frequency
of the readout pulse was set at fr, which is the dressed frequency of the resonator
when the qubit is in |0⟩.

The most relevant calibration procedure in the readout is to ensure that the
readout pulse power is not causing photon-induced transitions in the qubit[Sli12],
which severely limits readout efficiency, as the qubit state can change during
the measurement. These photon-induced transitions occur when the readout
photons recombine with noise at fro = f ′r − fq at a rate Γ↑↓,PI[Sli12]

Γ↑↓,PI = 4
g2

∆2
ro

ν2S (∓∆ro) n̄ , (4.9)
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Figure 4.8: Virtual Z-gates are performed on the second gate (sequence on top). φ refers to
the rotation axis, thus φ = 0 corresponds to the same axis as the original pulse and π reverses
the original pulse.

where g and ν are the qubit-cavity and the qubit-noise coupling, respectively,
and ∆ro = fro/(2π). Sφ(∆ro) is the spectral density of dephasing noise at
the detuning frequency, and n̄ is the average photon occupation of the cavity.
The latter is the only controllable parameter during the experiment. Thus, the
readout pulse amplitude, Arp, has to be kept at a low value so n̄ is also low.

Arp calibration [San16] is shown in Fig. 4.7 a). The calibration sequence
consists of sending a qubit π-pulse at varying frequency and, simultaneously,
a pulse at the readout frequency and varying amplitude. After ∼ 1 µs, the
qubit is measured with a standard readout tone with weak amplitude. When
the first cavity pulse has zero amplitude, the qubit π-pulse sets the qubit in
|1⟩ when the frequency is fq, thus observing a dip in cavity transmission (see
Section 4.2.3). At other frequencies, the qubit pulse does not excite the qubit
and the transmission is kept high. However, when the cavity pulse has nonzero
amplitude, it populates the cavity with photons, which induces a Stark shift
on the qubit frequency of ∆fq = 2χn̄/2π. If n̄ is too large, photon-induced
transitions in the qubit are triggered. These are mainly seen as dips in the
measured amplitude, while far from fq. To stay on the safe side, the resonator
amplitude is set at half the amplitude the first jumps are seen, around 0.1 V.

4.2.4.2 Qubit Frequency

The qubit frequency obtained with two-tone spectroscopy in Section 4.2.2 is not
very precise, since it can be Stark-shifted from the presence of large amounts of
photons in the cavity. In general, time-domain control is always a more precise
way of determining qubit and cavity properties.

Ramsey decay is a standard approach to finding a precise fq. As explained
in Section 4.2.3, Ramsey decay oscillates at a frequency equal to the detuning,
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δf , between the fq and the frequency of the Ramsey pulses. Thus, repeating
the Ramsey decay experiment at different frequencies will determine fq, the
frequency at which the decay shows no oscillations. This experiment, known as
Ramsey fringes, is shown at Fig. 4.7 b), and can give sub-MHz precision. For
this experiment, fq = 4.8250± 0.0002 GHz.

However, Ramsey fringes can be a rather long experiment, taking tens of
minutes, and a single trace can already give a good determination of fq. A
single fit of a detuned Ramsey trace determines δf , as it corresponds to the
oscillation frequency. This method requires that T2R is large enough so that
many oscillations can be accurately fitted, and an operation point where many
oscillations occur at high visibility before decaying. In this case, a 2 MHz
detuning is a good operation point, because the oscillations have high enough
amplitude to be correctly fitted. Moreover, as there is no way to identify the
sign of the detuning, so the operation point should be placed far enough so that
fluctuations are always lower than the detuning.

4.2.4.3 Virtual Z-gates

All the qubit pulses discussed so far have been in the X- or Y -axis of the Bloch
sphere, which change the population of the qubit. The Rabi oscillations, as
defined in Eq. (4.6), are indeed oscillations along any axis perpendicular to the
equator of the Bloch sphere. The standard approach to perform rotations in the
Z-axis is by applying virtual Z-gates [McK16a] as discussed in Section 2.5.2.3.
Virtual Z-gates consist of modifying the subsequent phases of the qubit pulses
effectively rotating the X- and Y -axes.

In Fig. 4.8, an example of a sequence that leverages the use of the virtual
Z-gates is shown, where two π/2-pulses are placed one after the other and a
virtual Z pulse is added in between which, effectively, consists of changing the
axis of the second pulse. When φ = 0, the two π/2-pulses bring the qubit to
|1⟩, and when φ = π, the qubit is back to |0⟩.

4.2.4.4 Thermal Population

Thermal population of the first-excited (and higher) states of the qubit can
considerably reduce the fidelity of the quantum gates and the readout efficiency.
Calibration of the thermal population can be performed by using the 1-2 qubit
transition. First, a calibration of f12 must be performed via similar Ramsey
measurements as the f01 using as an initial guess the obtained f12 from the two-
tone spectroscopy measurement (see Fig. 4.4 for a schematic of the transmon
lowest-level structure).

A sequence for calibrating the thermal population of |1⟩ is shown in Fig. 4.9
a)[Gee12]. The sequence consists of performing Rabi oscillations on the 1-2
transition, then applying a π-pulse to project |1⟩ into |0⟩. In the absence of ther-
mal population, no oscillations would be seen. However, small oscillations are
usually observed. The thermal population is obtained via Maxwell-Boltzmann
statistics[Jin14]
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Figure 4.9: a) Thermal Population Calibration. Pulse sequence on top of the main graph.
Data points are plotted in gray and fits in dashed coulored line. A Rabi sequence in the
1-2 transition is performed before a π pulse. In case of thermally excited states, the |1⟩
population oscillates. If a π pulse is applied prior to the Rabi sequence, the same behaviour
can be seen on the |0⟩ initial population. This corresponds to the No Reset dark blue dashed
lines. If a reset protocol is performed previous to this sequence, the excited population is
considerably reduced, and the ground population state increased, as can be seen in the Reset
light orange dashed lines. b) Level structure involved in the qubit reset protocol. |g/e, 0⟩
is the ground/excited of the qubit with no photons in the cavity and |g/e, α⟩ refer to the
ground/excited state of the qubit and the coherent state |α⟩ in the cavity. In solid blue lines
the driven transition, while the dashed are only marked for reference. The level differences
are not to scale.

Pe =
e
− hf01

kBTeff

1 + e
− hf12

kBTeff + e
− hf01

kBTeff

. (4.10)

For f01 = 4.825 GHz and f12 = 4.490 GHz, a Teff = 20 mK, would correspond
to Pe < 0.0001. However, it is common to have Pe ≈ 0.1, which correspond to
Teff ≈ 110 mK. To calculate the amount of |1⟩ population, the same sequence
is performed, but with a π-pulse at the beginning, thus observing the same 1-2
oscillations of the |0⟩ population. Assuming there is no population in higher
excited states, the thermal population can be obtained from

Pe =
Ae

Ae +Ag
, (4.11)

where Ag and Ae are the amplitude of the oscillations in the ground and excited
states, respectively. The resulting value seen in Fig. 4.9a) from this experiment
shows a 10% of thermal population, which indicates Teff = 110 mK.
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If single-shot readout was available, simple heralding would suffice to make
sure this thermal population does not damage gate efficiency and readout fi-
delity. Heralding consists of measuring the qubit state prior to starting the
algorithm and discarding all measured states different from |0⟩, thus ensuring
a proper initialization. However, this was not possible in the experiment due
to the lack of a quantum-limited amplifier. Instead, a reset protocol was used,
which is a sequence that reduces thermal population by driving the initial state
to |0⟩.

The reset protocol[Gee12] used in this experiment consists of two simultane-
ous drives sent to the qubit-cavity system, schematically shown on Fig. 4.9b).
The first drive is a low-power tone at the qubit frequency, fq, thus starting
a slow oscillation between |g⟩ and |e⟩. The second pulse is sent at the cavity
frequency when the qubit is at |g⟩, fr,g, which is the readout frequency used
so far. The role of this second drive is to populate the cavity with photons, as
long as the qubit is in |0⟩. As the number of photons keeps increasing, these
causes a Stark shift on the qubit frequency, so that the first pulse stops being
resonant with the qubit, thus leaving the qubit unaffected. The end result of
this sequence is that the qubit-cavity system ends in |0, α⟩, where α represent
the coherent cavity state with n̄ = |α|2.

When the system is already at |0, α⟩, the drives are stopped, and photons
escape from the cavity, returning to |0, 0⟩. This protocol relies on the photon
decay rate τ−1 being much higher than the qubit excitation rate, Γ↑, which
is achieved in most superconducting circuit experiments. In this experiment,
τ−1 = 1.86 MHz, and Γ↑ can be estimated by

Γ↑ = Γ↓e
−hf01/kBT , (4.12)

where T is the effective temperature obtained from the excited population and
Γ↓ is approximated as 1/T1. This results on Γ↑/2π ≈ 6 kHz ≪ τ−1.

The results from this reset sequence applied prior to the thermal population
calibration are shown superposed to previous Pe calibration in Fig. 4.9 a). There,
by applying Eq. (4.11), thermal population is reduced to < 1%, with Teff <
50 mK. Both pulses are 2 µs long and there is a 2 µs waiting time before
sequence starts.

Yet another benefit is obtained from using this sequence. Before starting
any new experiment, one should typically wait around 10 − 20 × T1 times in
order to ensure the qubit has decayed in |0⟩. However, this reset protocol brings
the qubit to |0⟩ irrespective of the initial state. Therefore, instead of waiting
∼ 200 µs, this waiting time is reduced to the 4 µs the protocol lasts, which is
almost a 2-order of magnitude improvement in sequence time.

4.2.4.5 Qubit Pulse Optimization

In order to optimally control the qubit state, Gaussian pulses can lead to errors
if they are shortened too much, as there is a wider spread in frequencies when
the pulse duration is reduced. If the pulse is short enough, there can be a
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Figure 4.10: Randomized benchmarking. The sequence is shown on top of the main graph.
Fit of randomized benchmarking of normal Gaussian pulses in dark blue dashed lines (No
DRAG), or pulses with the DRAG correction applied in light orange dashed line (DRAG),
while data is shown in gray points. Each point corresponds to 40 different random sequences
of N number of Clifford gates, each averaged 5, 000 times. After the sequence, a recovery
pulse is sent in order to bring the state to the ground state. Pulse fidelity is p = 0.993.

non-negligible contribution at the qubit anharmonicity, f = δ, which can cause
excitations up to |2⟩ in the qubit, thus exiting the computational qubit subspace
and leading to gate errors.

Gate error characterization is obtained with a Randomized Benchmarking
(RB)[Kni07] sequence. This sequence measures the error on Clifford gates,
which are the set of gates that, starting at |0⟩, move the qubit around the six
vertices of the three main axes of the Bloch sphere. A single sequence of the
RB protocol consists of applying N Clifford gates selected at random to |0⟩ and,
afterwards, applying a last recovery gate that brings the qubit back to |0⟩. This
last gate is another Clifford gate and can be easily calculated from the random
sequence. The final state will be closer to |0⟩ if little error is accumulated during
the gate sequence.

The RB protocol consists of applying this last sequence for a varying number
of N Clifford gates, and several randomized sequences for each N . Each single
sequence is averaged over many shots to reduce sampling error, or to increase
readout fidelity if there is no single-shot readout. For lowN , the final probability
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f(x)~⟨σZ⟩
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Figure 4.11: Can a single-qubit circuit approximate any bounded function?

to recover |0⟩ is Pg ≈ 1, since little error is accumulated. For very large N , the
acquired error will have spread the quantum state at any point in the Bloch
sphere, thus outputting Pg = 1/2 when averaging all traces.

In Fig. 4.10, the randomized benchmarking of the original simple Gaussian
pulse is shown, with a single-qubit gate fidelity of ≈ 0.96, which is a bit low for
usual standards, tending to fidelities of > 0.99. The gate fidelity, p is obtained
by fitting the RB decay to Pg = pN

2 + 1/2.
A standard Gaussian pulse can improve in fidelity by applying a DRAG

(Derivate Removal by Adiabatic Gate) correction[Mot09]. DRAG consists of
applying the derivative of the Gaussian pulse in the out-of-phase quadrature,
multiplied by a factor, β, that depends on the anharmonicity. If the Gaussian
pulse in the X-axis is described as ξx(t), the DRAG correction would be

ξy(t) = βξ̇x(t) , (4.13)

where β is a parameter that inversely depends on the anharmonicity and has to
be optimized.

The gate fidelity of the DRAG-corrected pulse can be seen in Fig. 4.10. The
improvement in fidelity is substantial, achieving a gate fidelity p = 0.993.

4.3 One Qubit as a Universal Approximant
In collaboration with the UB-BSC group of quantum computing, called Quan-
tic, a suitable algorithm to program on the IFAE/QCT transmon qubit was
identified. The algorithm is the implementation of the quantum version of the
Universal Approximant Theorem (qUAT). The simple question answered by
qUAT is whether a single-qubit circuit can encode any bounded mathematical
function in its gates (Fig. 4.11).

This section summarizes the demonstration of the positive answer to this
inquiry, along with its algorithmic description. However, for more detail, the
paper [Pér21] provides the full demonstrations†.

†This part of the work was developed by Dr. Adrián Pérez-Salinas, and it is summarized
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4.3.1 Universality of a single-qubit approximant
A single qubit can be in any state on the surface of a Bloch sphere, thus it can
represent any point in the [0, 1]⊗ [0, 1] plane. Any complex number can be thus
represented by a qubit state up to a rescaling. However, it is not evident that
a single-qubit quantum circuit that receives an independent variable x as an
input, can represent any bounded function, f(x), in the qubit state population,
after a proper rescaling. In order to do so, a quantum algorithm only dependent
on x should correctly approximate any g(x) by ⟨σz⟩ ≈ g(x), where g(x) = af(x)
is the rescaled function of any bounded function f(x) in the [0, 1] range.

The work in [Pér21] shows that, indeed, a single-qubit circuit is capable to
universally approximate any bounded complex function, z(x), in the degrees
of freedom of the gates in the circuit. Note that the function in the proof
include complex input variables compared to f(x) stated previously, making
the theorem more general. Two alternative demonstrations were performed by
using the Fourier theorem and the classical UAT. Each demonstration is proved
with its corresponding quantum algorithm, and have a different range of their
applicability.

The demonstration of the quantum UAT implies that more complex the-
orems can build upon it to develop new theorems, in the same way that the
Universal Approximation Theorem (UAT) is used in machine learning. More-
over, the algorithms proved in [Pér21] can be included in more complex quantum
algorithms as subroutines.

4.3.2 Proofs of universality
4.3.2.1 Quantum Fourier

The Fourier series theorem states that any bounded complex function‡, z(x)
can be convergently approximated by a series of complex exponentials.

The classical Fourier approximated function zN (x) after N steps, where each
step is another term of the Fourier series, is defined as

zN (x) =

N∑

n=−N

cne
i 2πnx

P , (4.14)

where
cn =

1

P

∫

P

z(x)e−i 2πnx
P dx (4.15)

and P is the length the function z(x) is to be approximated.
The Quantum Fourier Theorem is obtained by using a gate sequence that

can be mapped to the complex exponentials of the Fourier series. The quantum
Fourier gate sequence, UF , represents a single term in the Fourier series, which

here for completeness.
‡The exact details of the function definition are omitted. In reality, the Fourier theorem

only allows functions with a finite number of finite discontinuities in the interval of interest.
However, the reader is referred to [Pér21] for exact details of the mathematical developments.
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Figure 4.12: Optimization protocol used for obtaining the optimal parameters, θ⃗i.

depends on several parameters to be optimized, θ⃗i, and the independent variable,
x. The repetition of this sequence convergently approximates the target function
z(x). UF , is defined as

UF (x;ω, α, β, φ, γ) = Rz(α+ β)Ry(2λ)Rz(α− β)Rz(2ωx)Ry(2φ) , (4.16)

where θ⃗ = (ω, α, β, φ, γ) are the parameters to be optimized and are related to
the coefficients of a Fourier step.

4.3.2.2 Quantum UAT

The UAT states that any continuous function of m-dimensional variables can
be approximated by a sum of a set of non-constant bounded functions, defined
as σ, with adjustable parameters. The approximated function after N steps is

fN =

N∑

n=1

αnσ (ω⃗n · x⃗+ bn) , (4.17)

where ω⃗n, αn and βn are the parameters to be optimized. For the extension of
this theorem to a complex function z(x), please read [Pér21].

The Quantum UAT relies on replicating the classical theorem by using a
gate sequence that corresponds to the non-constant bounded functions σ used
in the theorem. The specific sequence, UUAT is

UUAT (x⃗; ω⃗, α, φ) = Ry(2φ)Rz(2ω⃗ · x⃗+ α) , (4.18)

where ω⃗, α and φ are now the parameters left for optimization.

4.3.3 Classical Numerical optimization

The UAT confirms that there is a set of parameters that approximates the
target function z(x). However, unlike the classical Fourier theorem [Eq. (4.15)],



94 CHAPTER 4. TRANSMON QUBIT EXPERIMENTS

no prescription is given to obtain them. Thus, the parameters are to be obtained
with classical optimization.

For classical UAT, SciPy implementation of gradient-based algorithms is
used to obtain the optimization parameters. The algorithms used are the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) and the L-BFGS (Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno) algorithms. These algorithms rely on using the
gradients to obtain the descent direction to obtain the function minimum.

The quantum implementation is performed on a noiseless quantum simulator
that contains sampling uncertainty. The sampling uncertainty consists of av-
eraging the result of the simulated quantum measurements instead on directly
using the expected Pauli values, ⟨σi⟩. Then, the cost function is calculated
with these simulated measurement average. At each cost function evaluation
step, the classical algorithm proposes new parameters based on the current and
previous results. This process is shown in Fig. 4.12.

The cost function driving the optimization is

χ2 =
1

M

M∑

j=1

(⟨σz (xj)⟩ − f (xj))
2
, (4.19)

where M is the total number of samples of x. The complex version is analogous
to this expression.

The L-BFGS method used in classical optimization is also chosen for the
quantum version, along with the genetic optimization algorithm CMA (Co-
variance Matrix Adaptation). Genetic algorithms explore large regions of the
parameter space and, most importantly, do not depend on gradients. This last
property can be beneficial because sampling noise and real data hinders the task
of gradient-based optimizers. However, genetic algorithms tend to require many
more function evaluations. In this work, the best fit between the two methods is
selected. Quantum optimization is more complex because the landscape of the
cost functions is unknown, so it is unclear which optimizer is the best choice.

Several selected functions are approximated to prove the validity of the quan-
tum Fourier and the quantum UAT algorithms. The single-variable approxima-
tions are benchmarked against the following functions:

ReLu(x) = max(0, x) , (4.20)

tanh(ax) for a = 5 , (4.21)

step(x) = x/|x|; 0 if x = 0 , (4.22)

poly(x) = |3x2(1− x4)| . (4.23)

The first two functions are chosen for their importance in neural networks.
The last two display non-trigonometric behavior, which prove that the algorithm
can approximate polynomial dependencies as well as discontinuities. These func-
tions are also used to encode the real and imaginary part of approximated com-
plex functions, z(x).
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Figure 4.13: a) The gate sequence of the Quantum UAT algorithm is shown on top. b) The
actual pulses of the sequence, with the prior reset protocol and the readout measurement.
Note that only Y gates are performed, while Z gates are virtual.

Four functions of two variables, f(x, y), are used for benchmarking multi-
variate functions. The functions are the known 2D functions named as adjiman,
brent, himmelblau, and threehump. Definitions of these functions can be seen in
[The20].

4.4 Universal Approximant Experiment

The experimental implementation of the Universal Approximant was performed
at two different labs, ICN2 and IFAE, with very similar setups. The experimen-
tal setup is explained in Chapter 3.

The Quantum Fourier and the quantum UAT algorithms are both similar,
but differ in the specific gate sequence, as seen in Eq. (4.16) and Eq. (4.18). Both
consist of a series of RY and RZ gates dependent on the independent variables
and the optimized parameters. These parameters are θ⃗i = (ω, α, β, φ, γ) for
the i step of the Fourier series, and ω⃗i, αi and βi in the case of the UAT. The
gate schematics of the Quantum UAT algorithm are shown in Fig. 4.13 a) as an
example.

The optimal parameters used in the gate sequences are the ones obtained
through the quantum simulation optimization described in Section 4.3.3. The
functions are approximated in a specific range, which for the real and complex
functions is x ∈ [−1, 1]. For a complete function evaluation, this range is dis-
cretized into 31 points distributed linearly along the range. Each individual
sequence was averaged over 10, 000 times for noise reduction.

The Y gates were implemented using Gaussian pulses with DRAG correction,
as explained in Section 4.2.4.5, and rotations around the Z-axis were virtual Z-
gates (see Section 4.2.4.3). The different phase of the Y -rotations are achieved
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with different pulse amplitudes, for a fixed time pulse of 21 ns.
The reset protocol detailed in Section 4.2.4.4 is applied before each sequence

to increase the fidelity and to allow a faster 10 µs-repetition rate. The readout
consisted of a 2 µs pulse at fr, thus measuring in amplitude. Rabi oscillations
are used to calibrate the |0⟩ and |1⟩ readout voltage, together with the relation
between pulse amplitude and Y -phase rotation. The Rabi calibration, together
with a frequency calibration, as explained in Section 4.2.4.2, were performed
prior the algorithm implementation. The complete experimental pulse sequence
for qUAT is shown in Fig. 4.13 b).

The optimization of the gate sequence parameters was not successfully per-
formed on the actual device. The main limiting factor was that each full function
evaluation lasted around 10 s, due to the large averaging and the fact that the
function had to be evaluated in several points along the x axis. The genetic algo-
rithm CMA required several evaluations of the function to obtain the minimum,
typically on the order of 106, which lead to very large optimization times. The
sequence time could be considerably reduced with the addition of a quantum
limited amplifier, leading to single-shot readout. Still, with single-shot readout,
several measurements should be performed to reduce sampling noise, with an
overall reduction in function evaluation of 2 orders of magnitude.

Gradient-based algorithms were also tried, since they are known to lead to
optimized results with a considerably reduced number of evaluations. However,
these do not perform well in this experiment, probably due to noise affecting
gradient search.

4.5 Results & Discussion
In order to prove the approximation capabilities of the Universal Approximant
algorithms, the following function approximations were implemented:

• Four real single-variable functions defined in Eqs. (4.20) to (4.23).

• The sixteen combinations of these single-variable functions used for the
real and imaginary components of a complex function.

• The four two-variable functions defined in Section 4.3.

All these functions have been approximated with both methods, Fourier and
UAT, classically and with a quantum simulator, with the exception of two-
dimensional functions, which can only be approximated with UAT. The experi-
mental implementation of the quantum approximation has been realized for all
the single-variable functions, four of the complex functions and the himmelblau
two-dimensional function.

4.5.1 Single variable functions
Figure 4.14 shows all the single variable real functions considered in the study,
as defined in Eqs. (4.20) to (4.23). In the plot, the case for N = 5 layers is
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Figure 4.14: Single variable real functions reproduced by classical (dark blue triangles), sim-
ulation (turquoise squares) and experiment (orange squares). The target function is shown
in black line. Four functions are reproduced, each in one column. The two approximation
methods, Fourier and UAT are displayed in columns. All the results are for five layers.

displayed (see below for discussion on the number layers). The target function
is displayed with a black-solid line and all three methods show good overall
agreement: classical, quantum simulation and experiment. It is important to
note that the function values have been rescaled to [−1, 1] instead of [0, 1] so
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Optimal p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
parameters -2.501 1.685 1.757 2.105 3.822 -1.788 -1.507 -4.640 0.430 1.875 5.038 -1.906

Rotational Z0 Y0 Z1 Y1 Z2 Y2 Z3 Y3
angles∗ p0 + p1x p2 p3 + p4x p5 p6 + p7x p8 p9 + p10x p11

x = −0.5 2.939 1.757 0.194 4.495 0.813 0.430 5.639 4.377
x = 0 3.782 1.757 2.105 4.495 4.776 0.430 1.875 4.377
x = 1 5.467 1.757 5.927 4.495 0.136 0.430 0.630 4.377

∗ Angles between 0 and 2π

Table 4.1: Optimal parameters and angles obtained for the quantum approximation relu(x)
with qUAT and 4 layers. Above, the 12 parameters that define the rotational angles obtained
through simulations. Below, the corresponding angles of the 8 rotations for three different
values of x according to Eq. (4.18). Note that Y -rotations are not x-dependent, hence they
are equal for all three x values.

that the output of ⟨σz⟩ is the approximated result.
The Fourier classical approximation relies purely on cosine terms and the

approximations fail at the functions ends due their simple periodic nature. This
method has the advantage over rest of allowing analytical calculations of the
parameters instead of optimizing them, which makes the approximation con-
siderably faster. In general, the classical UAT method outperforms the Fourier
method, although sometimes the UAT fails to deliver a good approximation at
the first optimization trial and has to be repeated.

The quantum simulation provides the best results of all methods. This is
mainly due to the fact that the quantum version has more parameters than the
classical versions. This allows a higher approximation capability for an equiva-
lent number of layers. However, sampling errors can hinder the correct param-
eter optimization and, similar to the classical UAT method, both the quantum
Fourier and UAT approximations sometimes output suboptimal parameters.

The experimental approximation using the optimal parameters obtained
from the quantum simulation is, by definition, bounded by the quantum simula-
tion results, up to some noise. The experimental methods show good agreement
with the target functions for all the considered cases. There is no strong dif-
ference between Fourier and UAT, even taking into account the fact that the
Fourier sequence has double the number of gates, implying an equivalent in-
crease in time. Thus, the coherence time seems to be long enough and the pulse
quality good enough for implementing all approximation methods successfully.

It is important to note that, in all method considered, not all functions are
equally well approximated. The hyperbolic tangent and the step function have a
similar shape, but the approximation quality differs, as the hyperbolic tangent
is considerably better approximated than the step(x). This difference shows
that discontinuities make the approximation harder in all methods. Also, linear
features such as the ones in step(x) on the negative part or relu(x) are difficult
to reproduce. Finally, non-trigonometric characteristics, such as the polynomial
nature of poly(x), lead to discrepancies, especially at the extreme points at
the maximum value of the function. However, these deviations, except for the
classical Fourier, are minor and are well reproduced by the approximations.
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N p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 . . .

1 2.35 -1.60 -1.57
2 0.86 1.42 -1.97 -1.43 2.85 2.55
3 0.82 1.57 16.92 2.99 -5.84 6.15 -1.41 8.88 -8.85
4 -2.50 1.69 1.76 2.10 3.82 -1.79 -1.51 -4.64 0.43 1.87 5.04 -1.91
5 -5.23 1.51 1.95 1.61 4.64 3.93 0.67 9.85 -0.21 -0.25 -4.55 -0.46 -3.58 . . .
6 -2.19 1.71 -2.30 -0.86 1.80 -1.83 -0.14 -1.22 1.25 0.92 5.48 1.56 0.92 . . .

Table 4.2: Optimal parameters for the quantum approximation relu(x) with qUAT for different
amount of layers.

Further analysis on the accuracy is discussed in Section 4.5.2.
An example of the parameters used for the sequence is shown in Table 4.1 for

the relu(x) function for the case of four layers and approximated via qUAT. A
total of 12 parameters have to be obtained, since each layer has three parameters,
as seen in Eq. (4.18). These parameters define the sequence together with the
independent variable x. The Y -rotations are independent of x, so the pulses
are the same. However, all Z-gates are different. The optimization protocol
becomes more complicated as more layers are added. Each quantum Fourier
step has 5 parameters (see Eq. (4.16)), compared to the 3 in qUAT.

4.5.2 Number of layers

Figure 4.15 shows χ2 of the single-variable functions described in Fig. 4.14 for
different number of layers. In general, χ2 is reduced as N is increased, as
predicted by each theorem.

In most cases, as mentioned in previous sections, the quantum simulation
provides the best results for all the N range, except in the classical UAT approx-
imation of poly(x). The experimental implementation should not give a lower
value of χ2 than the quantum simulation, since the same optimized parameters
are used.

As already noted in Section 4.5.1, the classical Fourier approximation re-
quires a higher number of layers to reproduce similar results than the other
methods. The cost function reduction with increasing number of layers is the
smallest of all, and is systematically outperformed by their quantum counter-
parts and the UAT method.

The experiment performs considerably well. None of the functions reaches
a value lower than 10−3, which suggests that this value represents the noise
plateau. It is expected that, for a large enough N , χ2 increases. This would be
caused either by longer sequences which expose the qubit state to decoherence a
longer time, or by a larger amount of pulses which accumulate more error in the
algorithm. In some functions, such as the UAT approximation of tanh(x), χ2 is
higher for larger N . However, since this is not a consistent trend compared to
the other functions, the increase in χ2 may be caused by statistical fluctuations
and that the limit at which χ2 starts increasing has not been reached.

Finally, tanh(x) is the best approximated function, probably because it does
not show abrupt features. This would suggest that the functions with smoother
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Figure 4.15: χ2 for the single variable functions displayed in Fig. 4.14 as a function of the
number of layers. Classical (dark blue triangles), simulation (turquoise squares) and experi-
ment (orange squares) cost function is shown.

behavior are easier to approximate, as expected. Although not proven here, it
is also expected that trigonometric functions are the easiest to reproduce due
to the trigonometric functionality of quantum gates. X− and Y−gates have
sinusoidal dependence on the pulse parameters, as can be seen from the Rabi
oscillation expression, Eq. (4.6), thus naturally incorporating the trigonometric
dependence on a possible input variable.

Table 4.2 shows the optimized parameters for the relu(x) for the qUAT
method for a varying number of layers. It is important to note that the un-
bounded optimization of the parameters sometimes output high values, such as
p32 = 16.92 in 3 layers for the angle of a Y rotation which, normalized to [−π, π],
is p32 = −1.92.

Interestingly, the approximated values for M − 1 layers tend not to provide
good estimates for the M -layer approximation. In the case of 2 and 3 layers, the
first layers (parameters p0 to p2), do share strong similarities. However, as this
similarity is not the common trend, sequential optimization, where optimized
parameters in the M − 1 layer are used as initial parameters for the M layers,
is not expected to yield better performance.

4.5.3 Two-variable functions

In Fig. 4.16, the himmelblau function is reproduced for the three approximation
methods, along with the target function. In this case, only the UAT is consid-
ered, since no proof of the Fourier approximation for multivariate functions is
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Figure 4.16: Himmelblau function approximation. In the top left panel, in grayscale, the
original target function is displayed as a 2D map. Approximation with classical obtained
parameters(top right, blue), quantum simulation obtained parameters (bottom left, turquoise)
and experiment with quantum simulation obtained parameters (bottom right, orange) are
shown. All the results are for five layers.

known.
The range of the independent variables has been extended to [−5, 5] to cap-

ture some local maxima and minima in the studied range. The discretization
of the range has been set at 25 points in each variable. The rest of the imple-
mentation is equivalent to the single-variable functions exposed in Section 4.5.1.
The results shown in the figure are also for five layers.

In the case of the himmelblau, all the methods perform rather well, being the
classical method the worst, since χ2 = 2 · 10−3, while the quantum simulation
outputs χ2 = 5 · 10−3 and the experimental implementation χ2 = 7 · 10−3.
The cost function evolution with N is similar to the single-variable case, with
the experimental implementation reaching a plateau at around N = 4, while
quantum and classical methods χ steadily decreasing with N .

4.5.4 Complex functions

The complex function approximation is shown in Fig. 4.17. The function shown
is z(x) = tanh(5x) + jrelu(x), although the four combinations between these
two single-variable functions in the real and imaginary parts have been realized
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Figure 4.17: Complex function. In rows the two different approximation, Fourier and UAT;
in colums the real and imaginary part of the function. The function is reproduced by classical
(dark blue triangles), simulation (turquoise squares) and experiment (orange squares). All
the results are for five layers. The target function is shown in black line.

experimentally as well. The twelve other combinations of the single-variable
functions have been only simulated.

As shown in Fig. 4.17, the function values range from [−1/
√
2, 1/

√
2], instead

of the [−1, 1] in the previous function to reflect that fact that the function is
encoded in the both the X and the Y axes and the theoretical observables
are ⟨σx⟩ and ⟨σy⟩. Otherwise, for the values where ⟨σx⟩ = ±1, ⟨σy⟩ would be
completely undetermined as these observables do not commute, and the value
would always be 1/2, and vice versa. Obviously, the function can easily be
rescaled to the previous [−1, 1] range.

The results are qualitatively analogous to the single-variable functions, as
one would expect. From the experimental point of view, only an extra pulse is
added to the sequence, where the ⟨σx,y⟩ population is rotated towards the Z axis,
where the measurement is performed. This extra pulse should not introduce a
considerable amount of error. The instrument effective resolution is reduced
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because the population range does not go from −1 to 1 as before, but between
−1/

√
2 and 1/

√
2. Finally, this approximation requires double the amount of

sequences since both axes have to be measured independently.
However, although the overall same behavior is observed in the complex and

real single-variable functions, larger discrepancies can be seen in some regions,
specially the negative values of x for the Fourier method. For this last case, the
experiment χ2 ≈ 6e − 2 is very close to classical Fourier, χ2 ≈ 8e − 2 which is
usually the poorest approximation. This discrepancy is expected to be caused
by the fact that not every sequence is exposed equally to decoherence. Different
sequences imply different pulses, and randomized benchmarking has only been
optimized for the Clifford group, so it could be that gates further away from
a Clifford gate have larger error. Moreover, decoherence mechanisms do not
affect equally the points on the Bloch sphere. For example, the decay rate has
a stronger effect for qubit states with larger |1⟩ population. Finally, there may
be some unknown systematic errors in the pulses that affect specific rotations
differently.

4.6 Conclusions
Overall, in this chapter it is shown that the one-qubit circuit approximation
works for all the chosen functions, regardless of its specific shape. The univer-
sal approximant algorithm for a single qubit does not represent any quantum
advantage, but could be used in more complex algorithms as a subroutine. The
extension of the algorithm to multiple qubits has not yet been studied, where
entanglement could play a relevant role. There are known ways to introduce an
independent variable inside an algorithm, which could make use of the quantum
universal approximant as a classifier inside a larger algorithm. Moreover, the
theoretical proofs can serve as the building block to further developments in
quantum information theory.

Decoherence and gate uncertainty did not affect significantly the experimen-
tal implementation of the algorithm on the 3D transmon used, which validates
the calibration and optimization methods shown in this chapter. The noise im-
posed an upper bound to the value of the cost function to ∼ 10−3, not allowing
to get to better approximations.

The optimization of the gate parameters directly performed with the qubit
could not be implemented due to the large amount of measurements required
for the optimization protocol to converge, largely exceeding the timescales of
experimental work. This could be improved with single-shot readout fidelity and
better software optimization, along with the development of faster optimizers
not based on gradients.

Finally, this chapter introduced the experimental techniques that will be
similarly employed in subsequent sections.
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Chapter 5

Engineering Flux Qubit
Hamiltonians

David López-Núñez, P. Forn-Díaz

Most of the work in this chapter is devised to designing a quantum anneal-
ing processor prototype. The designed processor, whose schematic is shown in
Fig. 5.1, will later be fabricated and measured, with the results shown on Chap-
ter 6. Characterizing coherent flux qubits is the primary goal of this thesis, and
the theoretical work to achieve such a goal is developed throughout this chapter.

A brief schematic of the processor prototype is provided in Section 5.1, where
the main design decisions are explained. The flux qubits of the prototype are
presented in Section 5.2. This section relies on the flux qubit theory from Sec-
tion 2.3 to investigate the specific case of four-josephson C-shunted flux qubits
(4J-CFQ) designed to perform coherent quantum annealing sequences. These
qubits have been chosen mostly due to fabrication constraints, but other types of
flux qubits could be potentially used. Then, prior to targeting other parts of the
quantum analog processor, a comparison between the 4J-CFQ and alternative
versions of flux qubits is made in Section 5.3.

The design of the processor requires more than the individual flux qubit
simulations. Indeed, the qubit-resonator coupling required for both readout and
control is defined in Section 5.4. Although the measured processor consists of an
uncoupled qubit device, a qubit-qubit coupling is later analyzed in Section 5.5,
as a coupled processor has also been designed, but not measured. Finally,
Section 5.6 describes how to perform single- and two-qubit annealing schedules
with the proposed design.
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Qubit Resonator
Coupler

Feedline

Coupler
control line

Qubit
control line

Global
coil

Analog Quantum 
Processor Prototype

Figure 5.1: Quantum annealing processor prototype, which consists of flux qubits coupled
dispersively to a readout resonator, this latter connected to a common feedline. The qubits
are controlled via local flux control lines and by a global flux set by an external coil. Two
prototypes are designed, either with uncoupled qubits or with coupled qubits in pairs. The
qubits are coupled via a coupler whose flux is controlled by another local flux line.

5.1 Analog Quantum Processor Prototype
The primary ingredient of an analog quantum processor based on superconduct-
ing circuits are flux qubits∗ [Yan15; Orl99]. These qubits, however, need to be
controlled, measured and connected between them by different circuit elements,
which combined shape the full quantum processor.

Figure 5.1 shows the schematics of the prototype of a quantum annealing
processor that will be developed in the rest of the chapter and measured in
Chapter 6. The primary goal of this prototype is to benchmark the qubit design
developed throughout this chapter and the measurement setup.

The processor is based on flux qubits, which are controlled via two different
flux sources. First, an external coil delivers a global flux bias, which is sufficient
to control the uncoupled flux qubits. However, local qubit control lines are also
added, which enable flux control at the single-qubit level.

A quarter-wave distributed resonator is coupled to each flux qubit, and also
coupled to a coplanar waveguide feedline common to all resonators. These res-
onators allow both to measure the qubit in the energy basis and to control the
qubit state with pulses. Typical coherence characterization techniques, such as

∗There exist alternative designs based on transmons[Lec15], but those require quantum
error correction and are thus out of reach.
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Figure 5.2: a) Four-Josephson junction C-shunted flux qubit circuit. The computational states
correspond to the persistent-current states in different directions. b) Schematic spectrum of
the 4J-CFQ, which is analogous to any flux qubit in the double-well regime.

T1 and T2 measurement, require quantum gates and dispersive readout (Sec-
tion 2.6.1).

When dealing with singe- or two-qubit annealing schedules, current-based
readout (Section 2.6.2) is not indispensable to track the qubit state, as it is
simple to differentiate between |0⟩ and |1⟩ by computing the local fluxes. There-
fore, while many-qubit quantum annealer designs are expected to incorporate
current-based readout, dispersive readout is more convenient for coherence char-
acterization.

The initial processor consists of several uncoupled qubits. However, as shown
in dashed box inside Fig. 5.1, a coupler has been also designed for another
prototype with coupled devices. This coupled prototype has been designed,
manufactured, but not measured at the time of the writing.

The specific physical design of the qubit circuit along with its measurement
techniques and results is left for Chapter 6.

5.2 Coherent Flux Qubits Design

5.2.1 Four-Josephson Junction C-Shunted Flux Qubit

Figure 5.2a) shows the four-Josephson junction C-shunted flux qubit, which
consists of three big junctions in series with a small junction, shunted by a large
capacitance, Csh. The 4J-CFQ is analogous to the traditional (three-Josephson
junction) C-shunted flux qubit (3J-CFQ) more common in the literature [Yan15;
Orl99] (see Section 2.3.2). The addition of the extra junction does not change
the shape of the spectrum, which is the same as any flux qubit in the double
well regime, as seen in Fig. 5.2b).

The main modification introduced by an extra large junction is the change in
the available values of α to have a localized double-well potential, with α being
the ratio between the small and the large junctions critical current. For the
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flux qubit to operate in the double-well regime needed for quantum annealing,
α > 1/3, compared to the 3J-CFQ, which is α > 1/2. In general, α > 1/N ,
where N is the number of large junctions.

The Hamiltonian of the 4J-CFQ is (omitting hats on operators)

H =
1

2
q⃗TM−1q⃗ − EJ

[
3∑

i=1

cos(ϕi) + α cos

(
3∑

i=1

ϕi + 2πf

)]
, (5.1)

where the first term corresponds to the charging energy of the circuit, with q⃗
the charge variables at each node and M is the capacitance matrix. The second
term corresponds to the Josephson energy of the junctions. EJ refers to the
Josephson energy of the big junctions, ϕi is the gauge-invariant phase difference
around big junction i and f is the magnetic frustration defined as the ratio
between the external applied flux, Φext and the superconducting flux quantum,
f ≡ Φext

Φ0
.

The capacitive term on Eq. (5.1) is defined as

1

2
q⃗TM−1q⃗ = 4EC

[
κ1
(
n21 + n22 + n23

)
+ κ2 (n1n2 + n2n3 + n3n1)

]
, (5.2)

where EC is the total capacitive energy of the circuit, the total capacitance
being CΣ = αC ′

J +Csh+C
′
J/3, with C ′

J the big junction capacitance. ni are the
conjugate momenta of φ and corresponds to the number of excess Cooper pairs
in each circuit node. κ1,2 are constants of order unity relating the capacitances
of the circuit (see Appendix B for exact definition of these constants).

From the circuit Hamiltonian in Eq. (5.1), a 2-level description near f = 1/2
can be made [Orl99]

H =
ℏ∆
2
σX + 2IPΦbσZ , (5.3)

with the qubit gap ∆ and the persistent current IP being the two parameters
that define the behavior of the flux qubit.

5.2.2 Design Parameters
The Hamiltonian in Eq. (5.1) has four degrees of freedom, but the exact def-
inition of the free parameters can be determined at will. A convenient set of
free parameters chosen would be IC , α, Csh and CJ . The main reason is that
they are closer to the fabrication values than working with energy terms such
as EJ , EC . . . Thus, fabrication limitations on the parameters are more easily
introduced:

• JC is the junction critical current density, which together with the junction
area, A, define the junction critical current, IC = JC · A. For this value
realistic limits are set of [1, 5] µA µm−2 [Chi03; Yan15]. The upper bound
(5 µA µm−2) is limited by fabrication and reproducibility of very thin
junction tunnel barriers by dynamical oxidation. Junctions with thicker
tunnel barrier and low JC can be easily obtained by static oxidation.
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However, lower JC will result in too low Ip, which sets a self-imposed
lower bound of 1 µA µm−2 in order to design large qubit-qubit coupling
energies.

• Abig and Asmall are areas of the big and small junctions, respectively.
Assuming that both junctions have the same JC , the ratio between them is
defined by α. Since α is order 1, both types of junctions can be fabricated
using the same fabrication procedure. Sometimes, when ratios between
different junctions are high (α ≲ 1), such as in SNAILs (Superconducting
Nonlinear Asymmetric Inductive Element)[Fra17], the different junctions
must be fabricated with different methods. Here, we impose ourselves the
limits [0.02, 0.2] µm2. The lower is set by fabrication feasibility, while the
upper bound is set to limit the junction self-capacitance (next point).

• SC is the capacitance density that, together with Abig,small, defines the
junction self-capacitance, CJ = SC · A. This term is not easy to charac-
terize and is highly dependent on the junction oxide thickness. According
to other literature values[Yan15], we set it to 50 fF µm−2.

• Csh can be tuned across a very large range, from few to hundreds of
fF, especially for single-qubit devices. In the processor design in this
chapter, only a lower bound is set to 1 fF, which is already comparable to
stray and junction capacitances in the circuit. Ideally, Csh ≫ CJ , so that
the capacitance of the circuit is dominated by Csh, thus making charging
energy EC more reproducible and reduce dielectric noise in the junction.

There are actually five fabrication parameters, although the Hamiltonian
only has four. This is caused by the fact that three fabrication parameters define
only two Hamiltonian parameters, IC = JCA and CJ = SCA, which enables
fabrication to have some freedom to yield the same Hamiltonian. However, both
SC and JC are connected through the junction oxide, limiting its independent
control.

5.2.3 Annealing Constraints

The flux qubits studied in this chapter are intended to perform annealing sched-
ules, which leads to some requirements on the circuit parameters:

• α. The most obvious constraint for the annealing processor is the lower
bound of α > 1/3 for the double-well potential to exist. Actually, α should
be considerably above this value, otherwise whenever the external bias is
not zero and the double-well is tilted, it will soon be that the two lowest
states are localized in the same well, thus destroying the persistent-current
description. Furthermore, α < 1 as otherwise the qubit wavefunction
would not be localized inside the double well and the qubit would be
charge sensitive[Orl99]. This last is true when Csh = 0, but Csh ̸= 0,
α ≲ 0.75, but is highly dependent on the rest of parameters.



110 CHAPTER 5. ENGINEERING FLUX QUBIT HAMILTONIANS

• The qubit frequency, ωq, can dramatically change during the anneal.
Moreover, as no transitions to the excited state are intended, its value is
not so important in analog quantum computing. Usually, only the qubit
frequency at the sweet spot, ∆, is considered.

The Hamiltonian of a single qubit in annealing is simplified to

H = hZσZ + hZσX , (5.4)

where hZ and hX are the Ising terms. Since this processor has no σX
control because ∆ is not adjustable, a high hZ must be achieved at the
end of the anneal, so that hZ/hX ≫ 1. To achieve such a large ratio, a
low hX helps, which in one qubit is hX = ∆/2. Thus lowering ∆ is helpful
for a successful annealing sequence.

On the other hand, a qubit with a low ∆ suffers from thermal excitations,
one of the main decoherence mechanism in quantum annealing, which is
around 500 MHz for 25 mK, so a ∆ > 0.5×(2π ×MHz) would be required.

• Ip is the magnetic dipole which couples the qubit to flux noise, the most
relevant source of decoherence for flux qubits. Then, a low IP value is
important for retaining coherence and control over the anneal schedule.
However, it cannot be arbitrarily low, since hZ is directly linked to this
value and is therefore essential for the annealing schedules.

However, the coupling between qubits with SQUIDs (see Section 5.5),
also depends directly on IP . At the end of the anneal, the coupling terms,
J , should be comparable to individual qubit terms hZ . For that, large
couplings are required, which are proportional to I2P .

With all this into consideration, an Ip around 50 nA is targeted.

• A brief comment on anharmonicity, δ, is necessary, since it is a very im-
portant design requirement in digital quantum computing. Typically, δ
is desired to be high so that there is no accidental excitations to higher
states when applying control pulses to the qubit, which is not the case
for annealing schedules. Nevertheless, flux qubits are inherently highly
anharmonic, so the designs presented have high δ.

Related to this, higher levels do play an important role in coupling between
the readout resonators and the qubit, which will be covered in Section 5.4.

5.2.4 Simulation Methods

The qubit parameters, mainly ∆ and Ip, have been obtained by the standard
method of exact diagonalization of the Hamiltonian on Eq. (5.1). A brief expla-
nation of the method is given here, but more detailed explanation on how these
simulations are performed is explained in Appendix C.

The Hamiltonian is written in its matrix form in the charge basis. The
charge basis is used since the capacitance terms are diagonal in this basis, and
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Figure 5.3: a) Flux qubit energies and b) flux qubit lower energy spectrum for default initial
values.

the Josephson terms are mostly sparse, with only a few off-diagonal terms.
The charge states are truncated at ±8 number of charges in each node, after
performing a convergence test. Then, an exact diagonalization is performed via
Python SciPy library, and the qubit spectrum and eigenergies are obtained. At
f = 0.5, the qubit splitting directly gives the value of ∆.

The simulation is performed at various flux points around f = 0.5, as re-
quired for computing IP , since it is related to ∂ω01/∂f . The qubit frequency

over the flux range is fitted to ℏωq =
√
(ℏ ∆)

2
+ (2IpΦ)2 according to Eq. (5.3).

An example result from these simulations is seen in Fig. 5.3, where the energy
spectrum is obtained for different flux points. The inherently large anharmonic-
ity can be visually seen. By looking just at the first transition, both IP and ∆
can be obtained. A more detailed analysis of these results and the parameters
used is given in the following section.

5.2.5 Qubit Simulations

The goal of the simulations explained in this section is to find the suitable values
within the fabrication bounds defined in Section 5.2.2, that fulfill the annealing
requirements defined in Section 5.2.3. Therefore, the qubit spectrum has been
analyzed throughout the large parameter space to find an optimal configuration.

Instead of sweeping both Abig and Asmall, only Abig has been swept along
with α. This way, the potential energy shape was not qualitatively modified
within the range of values attempted, and the simulations stayed in the double-
well regime.

The variables explored are JC , SC , Abig, α, and Csh. The dependence over
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Figure 5.4: Qubit gap and persistent current with parameter sweeps. Each figure represents
the qubit gap, ∆, on the left axis in dark blue, and the persistent current, IP , on the right axis
in light blue. All vertical axes are kept constant for easier parametrization. The parameters
swept are: a) the small junction ratio, α; b) the big junction area, A; c) the critical current
density, JC ; d) the shunting capacitance, Csh; d) the junction capacitance per area, SC .

SC has been observed to see how sensitive is the qubit behavior to its value.
However, the final design value has been set to 50 fF/µm2.

∆ and IP are the main outcomes of the simulations. Other important pa-
rameters, such as α and Csh/CJ are already defined by the input Hamiltonian
values. Moreover, although it is monitored, the anharmonicity is very large
along all the parameter space. EJ ≫ EC is also fulfilled, which ensures the
qubit to be flux-dominated, thus highly insensitive to charge noise.

The original default values are shown in Table 5.1. These simulations corre-
spond to EJ/h = 42.0 GHz and EC/h = 0.90 GHz with this starting values.
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α A SC Jc Csh ∆ IP
µm2 fFµm−2 µA µm−2 fF 2π ×GHz nA

0.45 0.04 50 2 20 1.55 28.0

Table 5.1: Default design values without optimization.

∆ is already in the desired range. However, IP need to be increased. In
Fig. 5.4 the behavior of both IP and ∆ for the different parameter sweeps is
shown. In this figure, a single parameter is swept, while leaving the others in
their default values. The same vertical limits have been set for easy comparison
between different parameter sweeps.

Some conclusions can be extracted from these simulations:

• Higher IC , which can be achieved either by increasing JC or Abig, causes
an increase in the persistent current as expected. Changing Abig also
modifies the junction capacitance, so the trend is not as clean as with JC .
Inversely, this same increase in JC and Abig causes a decrease in ∆. This
is a consequence of the increase of the barrier height of the double well
potential, which determines the coupling between the qubit states, and
consequently ∆[Orl99].

• α contributes to a higher IP , although at a smaller rate than IC . Although
∆ decreases with α at the initial values, it increases at larger values, where
the wavefunction is delocalized and could be potentially susceptible to
charge noise. In any case, the effect of α on ∆ and IP is considerably
smaller than the other parameters in the available range. The minimum
∆ with α is not at α = 1 because Csh/CJ ≈ 10

• An increase in Csh or SC notably reduces the qubit gap, because the
capacitance in the flux qubit plays a similar role as the mass in a harmonic
potential. Larger mass localizes more the states, reducing the coupling
between them, thus ∆[Ear18]. Although large Csh is desired, the reduction
in ∆ is too large. For SC around 50 fF/µm2, the effect on ∆ and IP is
low. However, the effect of SC is not completely negligible, so further
study should be performed to reduce or control its impact on the qubit
parameters.

5.2.6 Final Design Parameters
In Table 5.2 the final design parameters are shown with the respective final
target qubit properties. Two different designs have been used, which deviate
only in Csh. This results in two qubit designs with similar IP ’s but considerably
different ∆. The flux qubit spectrum for these values can be seen in Fig. 5.5.

Both qubit designs have α = 0.55, Abig = 0.05 µm2 and JC = 2.18 µA/um2.
Qubit design #1 has Csh = 8 fF and #2, Csh = 13 fF. IP between 40 and
50 nA has been obtained for both designs, IP = 45.2 nA for #1, and IP =
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Figure 5.5: Lower qubit frequency for the two final designs, whose parameters are shown on
Table 5.2. The value of ∆ and IP is also displayed for each qubit.

α A SC Jc Csh ∆ δ IP
µm2 fFµm−2 µA µm−2 fF 2π ×GHz 2π ×GHz nA

#1 0.55 0.05 50 2.18 8 2.2 7.6 45.2
#2 0.55 0.05 50 2.18 13 1.2 7.5 47.0

Table 5.2: Final design values after parameter search is performed.

47.0 nA for #2. Both qubit gaps are above 1× (2π ×GHz), which was a limit
to not be limited by thermal excitations, although they are not completely
suppressed. The qubit gaps are considerably different for both designs, with
∆ = 2.2 × (2π ×GHz) in the design with Csh = 8 fF and the second having
a much lower ∆ = 1.2 × (2π ×GHz) for Csh = 13 fF. This lower ∆ would
correspond to Pe = 0.38 if Teff = 100 mK, by using

Pe =
1

1 + ehfq/kBT
, (5.5)

so protocols to remove this thermal excitation may. Finally, a very large anhar-
monicity is reached, δ ≫ ∆, for both designs.

With these two designs, it is possible to evaluate the impact of a low ∆ on
qubit coherence. However, a lower ∆ is achieved by a higher Csh, which reduces
sensitivity to charge noise. Indeed, design #1 has Csh/CJ ≈ 5, which may be
insufficient.
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5.3 Comparison between flux qubit types

Four-Josephson junction C-shunted flux qubits (4J-CFQ) are actually not very
common in the literature. Other flux qubits, such as the (three-josephson junc-
tion) C-shunted flux qubit[Web17] (3J-CFQ) or the rf-SQUID[Har09b] are much
more common flux qubit designs. In this section, 4J-CFQ is compared to the
3J-CFQ and a C-shunted version of the rf-SQUID to evaluate whether they are
completely analogous up to a renormalization of their variables.

All three qubits designs are also compared to an analytically simplified ver-
sion of an N-junction flux qubit commonly used in the literature[Yan20]. The
goal of this comparison is to evaluate whether the simulation requirements can
be simplified to speed up the analysis, especially for many-qubit simulations.

However, as it is shown in Section 5.3.5, the N−junction approximation is
not valid for the circuits in the current device target parameters, unlike previ-
ously reported in the literature. Moreover, all flux qubit types behave differently
as function of circuit parameters, which means that no easy swapping between
flux qubits can be performed from the circuit point of view.

5.3.1 Flux Qubit in the Symmetric Basis

The flux qubit Hamiltonian as expressed in Eq. (5.1) is very useful when com-
paring to the physical design and can be easily mapped to fabrication variables.
However, this may not be the most useful description for an intuitive analy-
sis how to compare it to other flux qubit types. For these other cases, it is
more convenient to leverage the symmetries of the circuit and use symmetrical
variables.

A new basis is defined in terms of the original variables, which are the
phase differences across each of the junctions, φi. For a general number of big
junctions, N , the new basis is

ϕ =
∑

i

ϕi ,

ξµ =
∑

m

Wµmϕm ,
(5.6)

where the sums over latin indices goes from 1 to N , and over greek indices from
1 to N − 1. The matrix coefficients Wµm are

Wµm =

√
2

N
cos

[
πµ
(
m− 1

2

)

N

]
. (5.7)

The main variable, ϕ, is now the sum of the phase differences across all the
big junctions, which represents the sum mode. The other variables, ξµ vanish
when ϕ1 = ϕ2 = ϕ3, which happens at the minima of the potential energy. ξµ
represent the difference modes. The most relevant physics of the circuit takes
place in the sum mode, where, for example, the double-well potential is defined.
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This mode can easily be compared among qubits. For large arrays of junctions,
the difference modes are known to be negligible [Yan20],

For the 4J-CFQ, the exact expression of these new variables is

ϕ = ϕ1 + ϕ2 + ϕ3

ξ1 =
1√
2
(ϕ1 − ϕ3)

ξ2 =
1√
6
(ϕ1 − 2ϕ2 + ϕ3) .

(5.8)

The new Hamiltonian in this basis is

H4 = 4ECn
2 + 4E′

C(n
′2
1 + n′22 )

− Ej

[
3∑

i=1

γ cos(ϕ/3 +
∑

µ

Wµiξµ) + cos(ϕ+ 2πf)

]
.

(5.9)

The first two terms of the Hamiltonian correspond to the charge energy terms
and the rest are the Josephson energy terms. EC = e2

2CΣ
is the total capacitive

energy in the circuit, with C+Csh+
γ
NC, and E′

C is now the charging energy of
a big junction. γ ≡ 1

α will now be used instead of α as it is more convenient for
future comparisons. n is the conjugate moment of ϕ, and n′µ is the conjugate
moment of ξµ. The Josephson energy, Ej = αIC/(2π) is the Josephson energy
of the small junction, unlike previous EJ which was the Josephson energy of the
large junctions.

In this new form of H in Eq. (5.9) the sum mode behavior is clearly identified.
Adding or subtracting large junctions in this Hamiltonian is an easy task and
the main mode suffers minor modifications, which allows treating N as an extra
variable. Moreover, the capacitive terms are better separated now and clearly
separated between the sum and the difference modes.

This new basis provides a convenient notation to compare different flux
qubits, since all flux qubits share the same sum mode term, up to leading
order of the Taylor expansion of the cosine terms. If the difference modes are
neglected, all flux qubits are equivalent up to this leading order if they have the
same CΣ, Ej and γ/N

The main drawback is that the basis construction for simulation is not easy
in this scenario. Natural limits of maximum n on the junctions nodes are not
easily transferred to this basis (see Section 5.3.5). Furthermore, the relation
between fabrication parameters and the Hamiltonian is not straightforward and
physical constraints cannot be so directly imposed.

5.3.2 3-Junction C-Shunted Flux Qubit
Traditional C-shunted flux qubits (3J-CFQ) contain only two big junctions and
a small one, as shown in Fig. 5.6 a). This qubit has already been described in
Section 2.3.2. The behavior of 3J-CFQ is conceptually analogous to 4J-CFQ
but, by having only two big junctions, the qubit is described with two variables,
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Figure 5.6: Different flux qubit designs compared with the 4J-CFQ design.

which considerably simplifies the analysis, the fabrication, and the simulation.
In this qubit, with N = 2, the limit for the double-well regime is γ < 2 (or
α > 1/2).

The Hamiltonian in the symmetric variables is

H3 = 4ECn
2 + 4E′

Cn
′2

− EJ

[
2∑

i=1

γ cos(ϕ/N +Wiξ) + cos(ϕ+ 2πf)

]
,

(5.10)

with N = 2. Exact definition of ξ and Wi can be computed with Eq. (5.6) and
Eq. (5.7) respectively.

The Hamiltonians of 4J-CFQ and 3J-CFQ are very similar, but the role of
an extra big junction is not straightforward in the low N regime. It is uncertain
which value of N sets this low N regime.

5.3.3 N-Junction C-Shunted Flux Qubit

When extending the definition of flux qubit to an arbitrary number of junctions,
N becomes an extra free parameter, as shown in Fig. 5.6 b). In this scenario,
the relevant ratio for this N -junction C-shunted flux qubit (NJ-CFQ) between
junctions is γ/N , instead of γ or α.

The Hamiltonian for an arbitrary N is

HN = 4ECn
2 + 4E′

C

N−1∑

µ

n′2µ

− Ej

[
N∑

i=1

γ cos(ϕ/N +

N−1∑

µ

Wµiξµ) + cos(ϕ+ 2πf)

]
.

(5.11)

It has been shown that for large number of junctions the difference modes
contribute negligibly to the final result, as they behave as a linear inductance.
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Indeed, superinductors based on disordered superconductors [Mal18], such as
granular Aluminum, are thought to be formed by large arrays of junctions.
When this is the case, the Hamiltonian can be simplified to

HN ≈ HN,1V = 4ECn
2 − Ej [γN cos(ϕ/N) + cos(ϕ+ 2πf)] . (5.12)

This is the single-variable simplification of the flux qubit Hamiltonian based
only on the sum mode.

5.3.4 C-Shunted Superinductance Flux Qubit

When N is large, the first term in brackets of Eq. (5.12) can be expanded
through Taylor formalism and the Josephson-array inductance is recovered

HN ≈ HSI = 4ECn
2 + Ej

[ γ

2N
ϕ2 − cos(ϕ+ 2πf)

]
, (5.13)

where one could define the inductance energy as EL ≡ γ
NEj . The subscript in

HSI represents that this is a SuperInductance C-shunted flux qubit (SI-CFQ).
The circuit in Fig. 5.6 c) corresponds to the SI-CFQ and is equivalent to

either a fluxonium qubit [Man09] or to a rf-SQUID. SI-CFQ could indeed be
considered as a capacitively shunted rf-SQUID. When working in the same
energy scales as the previous qubits, SI-CFQ can be a perfectly suitable circuit
for performing quantum annealers. SI-CFQ has the benefit of being inherently
single-variable, which simplifies mathematical analysis.

The drawback is that superinductors are not typically available for fabrica-
tion in many labs. Achieving similar values with geometric inductance requires
very large loops, which is detrimental for noise [Per21]. Finally, this superin-
ductance can be achieved with very large number of junctions[Man09].

5.3.5 Comparison Between Flux Qubits

As commented before, performing the simulation in the symmetric basis, |ns⟩,
is more complex because this is not the natural basis of the system. When
imposing a maximum number of charges in the charge basis, |n⟩, it does not
translate directly to this basis. For example, if maximum number of charges is
10, then the maximum charge in the symmetric variable, which is n = n1+n2+
n3, would be 30. However, in this specific case, both difference charge variables
are set to 0, because these are always 0 whenever n1 = n2 = n3. In general,
the number of charges in the symmetric basis cannot take arbitrary values, but
they are all correlated, thus making basis construction more complex.

Finally, the four types of flux qubits commented in previous sections can be
compared: 4J-CFQ, 3J-CFQ, NJ-CFQ and SI-CFQ. The comparison between
qubit types is performed by making sure that the symmetric mode is equivalent
in all of them up to leading order. That is, EC is adjusted to be the same, which
usually means tuning the shunting capacitance of the individual qubit so that
the total capacitance, CΣ, is equal. Also, γ/N is the same in all designs, along
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Figure 5.7: Comparison between the qubit spectrum of the four different flux qubit Hamilto-
nians considered in Section 5.3.

with the small junction Josephson energy, Ej . Thus, the only difference between
the Hamiltonians comes from the difference modes and sub-leading order of the
symmetric mode.

Fig. 5.7 shows clearly that all the flux qubits behave differently, where ∆ can
vary as much as > 100% among them and IP is also noticeably different. This
figure shows just a snapshot, but the qubits behave differently in general among
all the parameter space explored. Moreover, the sorting of the qubit gaps and
persistent currents is not consistent, with the lowest ∆ qubit not always being
the 4J-CFQ. In general, all qubits have a similar behavior and can be used as
flux qubits, but with very different qubit parameters.

An important result is that the single-variable approximation, such as pre-
viously reported, is not valid in our 4J-CFQ design. The difference modes play
such an important role that cannot be neglected.

5.3.6 Comparing potential energies

An analysis on the potential energy for the symmetric variable has been per-
formed in order to understand if the potential energy had a relevant role on the
difference between the flux qubits. A comparison of the potential of the sum
mode is shown in Fig. 5.8 for the 4J-CFQ, 3J-CFQ and SI-CFQ. The poten-
tial energy of the simplified version is not analyzed here, as the comparison is
focused on full Hamiltonian circuits.

The sum mode potential energy are defined from the Josephson terms of
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SI-CFQ

3J-CFQ

4J-CFQ

Potential Comparison

f

Figure 5.8: Comparison between the potential of three different qubit types.

their respective Hamiltonians neglecting the difference variables, ξµ

U4J = −Ej (3γ cos(ϕ/3) + cos(ϕ+ 2πf)) , (5.14)
U3J = −Ej (2γ cos(ϕ/2) + cos(ϕ+ 2πf)) , (5.15)

USI = EL

(
1− ϕ2

2

)
− Ej cos(ϕ+ 2πf) . (5.16)

These potential energies share the same Ej , which means that the last term
is equivalent for all of them. The first term is only equal up to the quadratic
term in the Taylor expansion, which correspond to the first term in USI . The
difference in the potential energies comes, thus, from this higher order terms
from the potential which are more important as it deviates from ϕ = 0.

The two main features from the potential energies in Fig. 5.8 are the barrier
height and the location of the minima. In order to check if any of the char-
acteristics had any role on the observed difference in qubit spectra, an extra
refactoring was applied on γ, so that the potential of the 3J-CFQ and the SI-
CFQ was changed by modifying their γ to a γ′ to match the minima location
or the barrier height of the 4J-CFQ.

In Figs. 5.9 and 5.10 the effect of this modification of the potential energy can
be seen for matching the minima location and the barrier height, respectively.
The left panels show how the potential of the 3J-CFQ is modified. SI-CFQ
potential has been modified similarly. In the right panels, the comparison be-
tween all three qubits is depicted, showing the spectrum before and after the
modification.

In all cases the modification of U with the new γ′ brought closer the spec-
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3J’

3J

4J

3J

4J
SI

Changing Potential Minima Location

a) b)

Figure 5.9: a) Positive part of the potential of the 4J-CFQ is shown in black. In blue dashed
line the potential of 3J-CFQ is shown as used when comparing the flux qubits. In blue line the
potential of 3J’-CFQ, when adapting γ′ so that the minima are placed at the same location.
b) Spectrum of the 4J-CFQ (black), 3J-CFQ (dashed blue) and SI-CFQ (dashed light blue)
are shown as in Fig. 5.7. The 3J’-CFQ and SI’-CFQ with the modified potential are shown in
solid lines.

tra, but their numerical values still differ significantly. Therefore, the potential
energy is not the only relevant aspect of this difference.

In order to discard the difference modes, a closer look to these modes is
needed. If the plasma frequency of the difference modes is brought higher, it
will probably mean that its contribution is locked to their lowest state and, thus,
can be traced out. More work is required in order to understand the role of all
the different modes in the circuit.

5.4 Qubit-Resonator System

The qubit readout design depends on which measured operator is desired. In
digital quantum computing, measurements are performed in the energy basis to
determine qubit population. There, a dispersive readout scheme is used, where
resonator energy shift directly represent qubit state population. In quantum
annealing, the relevant measurement basis is the persistent current basis to
determine the qubit magnetization. Thus, a current-based readout is typically
designed.

For the prototype studied in this work, whose main goal is to benchmark
qubit coherence, it was more convenient to have the dispersive readout in place,
as already commented in Section 5.1. Both control and readout pulses can be
sent through the same resonator line. Moreover, dispersive readout is consider-
ably simpler than persistent-current readout, since the latter typically requires
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3J’

3J

4J

3J

4JSI

Changing Potential Barrier Height

a) b)

Figure 5.10: a) Positive part of the potential of the 4J-CFQ is shown in black. In blue dashed
line the potential of 3J-CFQ is shown as used when comparing the flux qubits. In blue line
the potential of 3J’-CFQ, when adapting γ′ so that the potential barrier height is the same.
b) Spectrum of the 4J-CFQ (black), 3J-CFQ (dashed blue) and SI-CFQ (dashed light blue)
are shown as in Fig. 5.7. The 3J’-CFQ and SI’-CFQ with the modified potential are shown in
solid lines.

Figure 5.11: Qubit-Resonator Circuit

a resonator terminated with a SQUID[Gro20], requiring extra flux control.

5.4.1 Readout Circuit

In the design used, the flux qubit is coupled capacitively to a resonator as shown
in Fig. 5.11. The resonator is a quarter-wave distributed resonator, modeled in
the circuit as an LC resonator.

The exact derivation of the Hamiltonian can be found in the Appendix C.
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A simplified explanation is given here. The Hamiltonian of the qubit-resonator
system can be expresses as

H = Hq +HR +HC , (5.17)

where Hq, HR, and HC are the qubit, resonator, and coupling resonator respec-
tively. Hq is conceptually equivalent to Eq. (5.1), where some terms are loaded
by the presence of the resonator. The resonator Hamiltonian is that of a simple
harmonic oscillator, HR/ℏ = ω′

R

(
a†a+ 1/2

)
, where ω′

R is the resonator loaded
resonance frequency. The coupling Hamiltonian is given by

HC = 2e

(
Φ0

2π

)
n1 + n2 + n3

mc
pR , (5.18)

where n1, n2 and n3 are the charge number operators of the big qubit junction
nodes, and pR is the resonator momentum, related to the resonator electric field.
mc is an effective mass that can be expressed as

mC =

(
Φ0

2π

)2

ηCC , (5.19)

where η is a dimensionless parameter that depends on the capacitances of the
system. Exact values of all the parameters are found on the Appendix C.

5.4.2 Dispersive shift derivation

Whenever the coupling is weak enough compared to both ωq and ωR, the system
can be approximated as two separated system with a dispersive coupling, χ,

H′/ℏ = (ω′
R − χσZ) a

†a−
ω′
q

2
σZ , (5.20)

where ω′
R and ω′

q are the loaded resonator and qubit frequencies, respectively.
In the dispersive regime, the resonator frequency is modified when the qubit
changes state by a factor 2χ.

To obtain the dispersive approximation of Eq. (5.20), the qubit-resonator
Hamiltonian on Eq. (5.17) is rewritten as H0+V . The first term is the uncoupled
Hamiltonian, H0 = HR + Hq, and V = HC is the coupling term, considered
as a small perturbation. Since this term is small compared to H0, a Schrieffer-
Wolff transformation can be performed, which consists of transforming this small
perturbation into the original uncoupled basis. The final Hamiltonian, after
reduction of the flux qubit to the lowest two levels, is Eq. (5.20).

In the flux qubit-resonator system studied here, the dispersive shift obtained
by this transformation is defined as

χ =
1

2


∑

j ̸=0

(χ0j − χj0)−
∑

j ̸=1

(χ1j − χj1)


 . (5.21)
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The terms χij are

χij =
|gij |2

ωij − ωR
≡ |gij |2

∆ij
, (5.22)

where ωij is the qubit transition frequency between levels j and i keeping the
corresponding sign. gij is the coupling element matrix for the qubit, defined as

gij ≡ ⟨i|κC(n1 + n2 + n3) |j⟩ , (5.23)

where κC = 2e
mc

(
Φ0

2π

)
is the coupling constant obtained from Eq. (5.18), and

the states |i⟩ are the uncoupled qubit eigenstates. Follow Appendix C for more
details on this derivation.

By looking at Eq. (5.21), it can be noticed that higher qubit energy states
can have a strong effect on the dispersive shift if a qubit transition frequency
is close to ω′

R, since the denominator in Eq. (5.22) will be smaller. However,
this applies only to the first excited states, since the terms ω0i and ω1i for
i > 3 are rapidly detuned from the resonator frequency, thus vanishing for very
high energy qubit states. However, gij goes up for these states, so this requires
manual truncation or renormalization techniques[Par17].

5.4.3 Qubit-Resonator Simulations
In order to simulate the qubit-resonator system, a first separate treatment is
performed in the uncoupled Hamiltonian. Full coupled system analysis is very
costly computationally and can lead to very large matrices that Python may
not handle. Moreover, when the subsystems are weakly coupled, a separate
treatment is justified.

For obtaining the qubit states, the same procedure as in Section 5.2.4 is fol-
lowed, after modifying the parameters by the resonator loading as in Eq. (5.18).
HR has exact harmonic solutions, so analytical solutions using Hermite polyno-
mials are used.

In order to simulate the coupling part of the Hamiltonian, the full system
is described in the uncoupled basis. The basis states |Ψ⟩ are constructed using
the lowest energy states of the two subsystems. These states are defined as

|Ψ⟩ = |ψq⟩ ⊗ |k⟩ , (5.24)

where |ψq⟩ are the qubit lowest energy eigenstates and |k⟩ are the harmonic
oscillator basis states.

Hc in Eq. (5.18) can be exactly computed in the basis defined in Eq. (5.24).
The qubit states have been diagonalized in the charge basis, so their charge
basis representation is available. Then, the ni operators are diagonal and can
be easily computed. For the harmonic term, the harmonic oscillator momentum
definition is known,

pR = i

√
ℏmRωR

2

(
a† − a

)
, (5.25)

where mR is an effective mass dependent on the system capacitances.
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The matrix representation of HC is not sparse, and all terms are populated
indeed. The 10 lowest eigenstates of the qubit and the 5 lowest harmonic modes
are used, thus obtaining a 50× 50 matrix. This matrix, together with diagonal
H0, describes now the full system.

Once the full-system matrix is diagonalized, it is useful to map the new
coupled states to the uncoupled basis (see Fig. 5.12). This way, states can be
numbered n,m, where n is the number of photons in the resonator and m is
the qubit state in the uncoupled system. χ can be obtained by calculating the
difference between fr when the qubit is |1⟩ and in |0⟩. This can be expressed as

ℏχ =
1

2
[(E1,e − E0,e)− (E1,g − E0,g)] . (5.26)

χ can also be computed by solving Eq. (5.21), which is not needed for the
full system circuit to be diagonalized, and can be obtained with the uncoupled
results, but may require going up to higher qubit states to converge.

5.4.4 Results
In Fig. 5.12 the system spectrum is shown. Panel a) shows the bare qubit
spectrum, where we can identify the 0 − 1 and the 0 − 2 transitions. The
transitions are labelled according to the number of excitations they contain, thus
0−1 is labelled as 1, and the 0−2 as 2. In panel b), the uncoupled Hamiltonian
spectrum is displayed. The previous qubit states can now be identified as 1⊗ 0
and 2 ⊗ 0, since they correspond to qubit excitations with no photon in the
resonator, where the ⊗ symbols represent that they are uncoupled transitions.
The two pure photon states are easily identified since there is no flux dependence.
Then, the last state in the plot contains an excitation in both the qubit and the
resonator.

In panel c), the full coupled spectrum is shown. Visual inspection is enough
to map between the uncoupled and coupled spectra. Now, the states are labelled
in terms of the original uncoupled system. The coupling is very small compared
to the transition frequencies, and can only be seen in the avoided level crossing,
as shown in the inset.

The avoided level crossing provides the coupling between the first qubit level
and the resonator by measuring the vertical distance between the levels, which is
g01 ≈ 50×(2π ×MHz) (note that g01 is flux-dependent). By applying Eq. (5.22),
an estimate of the dispersive shift at the flux bias point can be performed, only
taking into account this level, χ01 ≈ 0.5× (2π ×MHz).

In Fig. 5.13, the total dispersive shift is shown along with the individual χij

contributions. Panel a) shows the dispersive shift in the flux range that will be
used during quantum annealing, and panel b) shows a wider range, coinciding
with the one shown in Fig. 5.12.

The left panel clearly shows that the biggest contribution to the dispersive
shift is χ12, whose effect has a different sign and half the amplitude, as expressed
in Eq. (5.21). This effect is understandable since ω12 ≈ 9.5× (2π ×GHz) is the
closest transition to the resonator frequency, ω′

R ≈ 7.8× (2π ×GHz).
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Figure 5.12: Qubit-Resonator Spectrum. a) The qubit low spectrum with the loaded values
from the resonator coupling. The transitions are labelled as respect to the |0⟩. b) The
uncoupled spectrum of both the resonator and the qubit, where the transitions are labelled
nq ⊗nr in terms on how many excitations are in the qubit, nq and resonator, nr. The symbol
⊗ indicate that this is the uncoupled spectrum. c) The coupled spectrum, where the states
are labelled by comparing visually with the uncoupled spectrum. The only visible difference
in this spectrum are the avoided level crossings, such as the shown in the inset.

In the sweet spot, χ ≈ 4× (2π ×MHz), an order of magnitude greater than
the predicted by observing the avoided level crossing on the inset of Fig. 5.12c).
Indeed, χ01 is much smaller than the total dispersive shift and has a negligible
contribution. This justifies the need of considering higher levels in the calcula-
tion of the qubit-resonator interaction.

Another important aspect is that the dispersive shift does not vary dramat-
ically during this annealing range, and it starts increasing at f = 0.5 ± 0.01,
which may not be surpassed in the analog computing schedules. This allows to
use the dispersive readout along all this flux range, since the coupling is low at
all times compared to the other system frequencies.

On the right panel of Fig. 5.13, the same dispersive shift is plotted in a
wider range. In this range, two avoided divergences are seen. These happen
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Figure 5.13: χ and χij for different fluxes. a) takes into account the flux refime where usual
annealing schedules take place, and b) a wider regime. The shaded region in b) shows region
where the interaction is so strong that the dispersive regime is not valid, thus ξ.

when there exist frequency collisions. The first one occurs when ω12 is resonant
with ω′

R, and the second one is the avoided level crossing shown in Fig. 5.12 c)
inset. In these situations, the qubit-resonator interaction is so strong that the
dispersive interaction is no longer valid.

The divergences in χ indicated hybridization between the qubit and the
resonator, which would destroy the annealing sequence. Therefore, a plot like
Fig. 5.13b) is needed to determine which is the maximum flux range that can
be applied before qubit and resonators states hybridization occurs.

5.5 Coupling qubits
In the context of quantum annealing, coupling is a crucial element as explained
in Section 2.4, and it is necessary that the couplings are tunable, with large
couplings both for positive and negative interactions, and with possibility of
switching it off completely.

For the qubit-qubit coupling on the coupled qubit prototype that was de-
signed by the QCT team, a ZZ-coupling between flux qubits is proposed. The
ZZ-interaction couples the qubits through σZ operators in Eq. (5.3), which
corresponds to a coupling in the main qubit loop. The ZZ-coupling is a very
common coupling scheme in quantum annealers due to its simplicity, and it
leads to spin glass [Har18], which is a hard problem classically.

The simplest flux-tunable coupler for flux qubits is a rf-SQUID, already
introduced in Section 2.3.3, which consists of a Josephson junction in series
with an inductance in a loop, as seen in Fig. 5.14 a). The Hamiltonian is

Hrf = 4ECn
2 + EL

ϕ2

2
− Ej cos(ϕ+ 2πf) . (5.27)
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Figure 5.14: a) rf-SQUID, which is the coupler used in the processor prototype. b) Full
coupled circuit, with two 4J-CFQ qubits on the sides and the rf-SQUID in the middle, all
galvanically coupled.

The rf-SQUID can be itself used as a flux qubit, as in D-Wave processors
[Har09b]. One of the main differences between the rf-SQUID working as a
coupler is that couplers need to have a very large f01 compared to the qubits,
so they always stay in |g⟩. A large f01 transition ensures the coupler always in
|0⟩ and responds fast to the qubit changes, thus not participating in the system
dynamics.

The schematic of the coupling is shown in Fig. 5.14 b). In this particular de-
sign, the two qubits are galvanically connected to the rf-SQUID coupler, coupled
through a shared mutual inductance, M . A galvanic connection is chosen as it
is easier to obtain a large coupling compared to geometric inductive coupling,
which requires either bridges, so that the two loops overlap, or large loops.

The most important parameter of the coupler is its susceptibility, χ, which
indicates how sensitive is the coupler current to a flux change. This is defined
as

χ ≡ 1

Leff
=

∂I

∂Φext
=
∂2E0

∂Φ2
ext

. (5.28)

Here we also introduced the equivalent effective inductance, Leff , the coupler
represents as a circuit equivalent.

The coupler susceptibility as a function of the rf-SQUID flux is shown on
Fig. 5.15. The coupler response can be tuned with the external flux threaded
through the coupler loop, whose response can change sign and be turned off.
This last aspect is crucial for an annealing schedule, since the start of the anneal
should have the qubits decoupled. Sign change allows for ferromagnetic and
antiferromagnetic couplings. For this simulation, the parameters were taken
from [Web17], and listed in Table 5.3.

Apart from χ, the coupling strength depends on the mutual inductance
between the rf-SQUID and the qubits, M , and the persistent current of the
qubits, IP . For low couplings, the effective coupling, J ≪ ω01, with this coupler
is

J = χM2I2P , (5.29)

assuming identical qubits and M . This expression responds to a semiclassical
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Figure 5.15: rf-SQUID Susceptibility as a function of the external flux.

L A SC Jc
pH µm2 fFµm−2 µA µm−2

467 0.26 50 2.78

Table 5.3: rf-SQUID design parameters.

analysis where the coupling, if small enough compared to ω01, is treated classi-
cally, while the individual components are analyzed quantum mechanically. In
this prototype, coupling is expected to be at least an order of magnitude lower
than the qubit frequencies, thus validating this expression.

In order to enhance the coupling one can increase M , IP or χ. Increasing
IP can reduce performance and decoherence due to increased susceptibility to
flux noise, as explained in Section 2.3. A larger M is an easier path to increase
the coupling. Nevertheless, if M is very high, it cannot be neglected in the
flux qubit circuit schematic, unlike previously simulated. A different coupler
than the rf-SQUID could be used to increase χ. In this design, the maximum
absolute coupling has been optimized, which occurs for the ferromagnetic case.

An important remark, is that Eq. (5.29) is a semiclassical approximation
of the coupling. When J is strong, as intended for quantum annealing, this
expression is no longer valid, and the full circuit must be properly analyzed. In
Section 5.6 this point is discussed.

5.6 Annealing Schedules

An annealing schedule is the analog version of a gate sequence in digital quantum
computing. For the transversal Ising Hamiltonian schedule, the sequence is
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defined as[Far00b]

H(t) =
∑

i

(hZ,i(t)σZ,i + hX,i(t)σX,i) +
∑

i<j

Jij(t)σZ,iσZ,j . (5.30)

An annealing sequence usually starts with hZ,i = Ji,j = 0, and hX,i ̸= 0. This
corresponds with the initial state of the system being a complete superposition
of all computational states. Then, as time evolves, hX is tuned down and both
hZ and J are increased to their final value. The final state leads to the solution
of an optimization problem, as explained in Section 1.2.2. The specific imple-
mentation of such a sequence on each device depends on the circuit properties
and functionalities.

5.6.1 Single qubit Annealing
Understanding a single-qubit annealing sequence is very useful when considering
larger systems. When the flux in the main qubit loop is swept, the energy levels
change as seen in Fig. 5.16†. If starting the sequence in |g⟩ at f = 0.5, and
increasing f , |g⟩ will follow the dark blue line.

It is important to remember than |g⟩ is not a computational basis state,
since in quantum annealing such a role is taken by the persistent current states,
defined as |0⟩ and |1⟩. It is important to note here that the decision on which
circulating direction has |0⟩ and |1⟩ is arbitrary.

The average circulating current, ⟨Icirc⟩ is obtained by the circulating current
operator, Îcirc = ∂H

∂Φext
. Figure 5.16 b) shows that ⟨Icirc⟩ in |g⟩ changes from 0

when in f = 0.5 to a value that becomes close to the actual IP , since double-well
potential becomes so tilted it is nearly a single well potential. This is expected,
since when the flux bias is large enough, |g⟩ would be approximately equal to
one of the two computational states, whose circulating current is exactly Ip.

In annealing schedules, it is common to write a normalized time, s = t/tf ,
where tf is the final time of the annealing sequence. A single-qubit annealing
schedule could sweep the flux from 0.5 at s = 0 to 0.51 at s = 1 linearly.
In such an annealing sweep, |g⟩ will evolve from a complete superposition of
|0⟩ and |1⟩ to the |0⟩ state as the time evolves, as seen in Fig. 5.16c). The
Ising coefficients hX and hZ , can be directly computed from the flux qubit two
lowest-level description, since

ℏ∆/2 = hx ,

2IP (f − 0.5) = hX , (5.31)

as can be inferred from Eq. (5.3). In Fig. 5.16 d), the evolution of the Ising
coefficients in this annealing schedule is shown, which at the end it achieves a
ratio |hZ/hX | ≈ 3, which may be too weak.

In order to increase the ratio of |hZ/hX | and final |0⟩ population, a higher
flux range can be explored. It is important to note that by increasing the flux

†Throughout this section, values from qubit design #2 from Section 5.2 are used.
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Figure 5.16: All these simulations are for flux qubit design #2 in Section 5.2. The dark blue
colored parts correspond to what corresponds to a single qubit annealing sequence. Upper
x axis in b) and c) shows the adimensional annealing time. a) Energy levels for varying
external flux. b) Circulating currents obtained from the operator for both the ground and
the first excited state. In dashed, the circulating current of the computational states, which
corresponds to the persistent current. c) Probability of measuring one of the computational
states as the qubit evolves along the ground state. d) Evolution of the Ising parameters when
sweeping the flux.

beyond this range, the hyperbolic approximation of the 2-level flux qubit fails.
Without the hyperbolic approximation the analysis is more complicated, since
linear relations in Eq. (5.31) are no longer valid. An alternative is to design a
∆-tunable circuit.

Fig. 5.17 shows the plots from Fig. 5.16 in a wider flux range. By looking at
the circulating current in Fig. 5.17 b), one can see that the excited state ⟨Icirc⟩ =
0 around f = 0.45. After this point, both |g⟩ and |e⟩ have the same current
direction, which is an invalid configuration for quantum annealing. Moreover,
before this takes place, hZ/hX and P0 have already been maximized, as seen in
Fig. 5.17c-d). Thus, the annealing sequence should be stopped at the maximum.
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Figure 5.17: All these simulations are for flux qubit design #2 in Section 5.2. The dark blue
coloured parts correspond to what corresponds to a single qubit annealing sequence. a) Energy
levels for varying external flux. b) Circulating currents obtained from the operator for both
the ground and the first excited state. c) Probability of measuring one of the computational
states as the qubit evolves along the ground state. d) Evolution of the Ising parameters when
sweeping the flux.

Figure 5.17c) shows that |g⟩ can be, to a very good approximation, |0⟩.
Furthermore, in Fig. 5.17d), it is seen that the ratio between Ising parameters
can be increased to hZ/hX ≈ 10. When many qubits are placed, the algorithm
efficiency relies on measuring the correct state, which is proportional to P0, thus
P0 ≫ 0.9 would be desireable at the end of the anneal.

5.6.2 Two-qubit Annealing

The two-qubit with a coupler system showed in Fig. 5.14 b) is considered. It
consists of two flux qubits coupled inductively via a rf-SQUID. A complete
analysis would require the simulation of this whole system. However, for a first
appproximation, the single-qubit results from previous section are considered
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Figure 5.18: Two-qubit anneal schedule terms. Single qubit parameters on a) and two-qubit
coupling J on b).

and the coupling is added semiclassically, as described in Section 5.5.
The two-qubit transverse Ising model is then expressed as

H =

2∑

i=1

(hZ,i(t)σZ,i + hX,i(t)σX,i) + J(t)σZ,1σZ,2 , (5.32)

where the subindices represent the two qubits. The coupler does not affect the
dynamics and only determines J .

In Fig. 5.18, the one-qubit Ising parameters together with the coupling are
shown. The Ising parameters have been computed by using the same qubit
parameters as in Section 5.6.1, tuning the flux to values where the hyperbolic
2-level qubit regime stays valid.

The coupler has been simulated with the values used in Section 5.5, with
a realistic qubit-coupler mutual inductance of M = 43 pH. The flux sched-
ule consists of starting with the rf-SQUID at the zero susceptibility point and
increasing it towards f = 0.5 where the interaction is maximized (see Fig. 5.15).

The final J with this approach is two orders of magnitude smaller than hi.
This means that future designs need to severely increase this value. Moreover,
although coupling is much smaller than qubit energies, the results shown here
should only be seen as an approximation. The real Ising parameters require a
full system analysis instead of this semiclassical approximation. Finally, qubit
crosstalk has not been considered, which may be very important. In general,
crosstalk calibration is one of the most demanding tasks required to operate an
annealing processor.

In this section the Ising parameters have been obtained from the flux applied
to the system. However, in real scenarios, this should happen the other way
around. For a defined annealing schedule, the applied fluxes must be found. This
reverse problem must be solved using optimization techniques, as no analytical
method is known.
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Chapter 6

Flux Qubit Experiments
David López-Núñez, Fabian Zwiehoff, Elia Bertoldo, Luca
Cozzolino, Barkay Guttel, P. Forn-Díaz

This chapter presents the results of the flux qubit experiments performed with
the prototype design introduced in Chapter 5, where the Hamiltonian design was
developed. Here, in Section 6.1 the physical implementation of that Hamiltonian
is explained, with all the necessary finite element simulations and capacitance
and inductance analysis.

The device fabrication process is not thoroughly explained, since the de-
signed devices are not fabricated in-house, but at the University of Glasgow
at Prof. Martin Weides group, and at Superfab group led by Prof. Vladimir
Antonov at the Royal Holloway University of London. The experimental setup
has been already extensively introduced in Chapter 3, so only a few details on
the chip packaging are given in Section 6.2.

Spectroscopy measurements are performed prior to coherent control to ini-
tially benchmark qubit parameters and quality. These measurements (Sec-
tion 6.3) provide a prior characterization of qubit ∆ and IP , and also allow
to map the current passing through the coil with the flux experienced by the
qubits.

Coherent control of flux qubits is presented in Section 6.4, which constitutes
one of the most relevant results from this thesis. Time-domain measurements
show T1 as large as 42 µs, but T2R ≈ 15 ns. This short T2R probably indicates
large flux noise. Moreover, the qubit is explored in various flux point, which
gives insights about the origin on the noise. However, these results are still
work in progress as qubit has not yet been controlled at the symmetry point.
The coherence results indicate the path to continue to develop the following flux
qubits in the group.

135
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Figure 6.1: a) Layout of the chip with 8 individual flux qubits and their readout resonators
coupled to a common transmission feedline. From the bottom and top of the chip, 8 flux
bias lines emerge towards the qubit loops. b) Zoom on one of the qubits, with its dedicated
readout resonator and local flux line.

a) b)

Figure 6.2: a) Floating qubit coupled to the local flux line. b) Grounded qubit coupled to the
local flux line.

6.1 Chip Design

In this section, all parts of the flux qubit device presented in Chapter 5 are
physically designed: readout resonators, local flux lines, qubit loops, etc. The
methods described here cover many of the required steps in an actual quantum
processor design.

6.1.1 Device overview

The full device design is shown in Fig. 6.1a). In the central part, a feedline
with an input and output port is used for transmission-type measurements. A
total of 8 readout resonators are inductively coupled to the feedline with 8 flux
qubits, each one capacitively coupled to their respective resonator.

The qubits in this device correspond to the two theoretical designs exposed
in Section 5.2.6. The 4 qubits on the left correspond to the design #1, and
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Figure 6.3: S21 magnitude of the resonators simulated with Sonnet.

the 4 on the right to design #2. Both designs consist in 4-Josephson junction
C-shunted flux qubits with IC = 109 nA and CJ = 2.5 fF, both referring to the
large junction. The ratio between the small ad the large junction is α = 0.55.
The only difference between the designs is the shunting capacitance, Csh, which
was 13 fF for design #1 and 8 fF for design #2.

Another variation is introduced in the qubit loops. The 4 qubits above the
feedline are floating, thus disconnected from the circuit, and the 4 qubits below
are galvanically attached to the circuit ground plane, as shown in Fig. 6.2. One
of the goals of this device is to observe whether the loop configuration has any
significant effect on the coherence.

A zoom on a single qubit device is shown in Fig. 6.1b). Each qubit is
capacitively coupled to its own resonator, which is itself coupled inductively to
the feedline. Each qubit is also coupled inductively to a flux bias line that is
placed in close proximity to the qubit loop. This line allows for fine local flux
control. Apart from the local flux lines, there is a global coil placed on top of
the box containing the chip for biasing all the qubits.

The GDS layout file seen in Fig. 6.1 was created by a Python script based on
the package GDSPy∗. This package provides the basic geometrical forms upon
which the final design is formed. The QCT lab developed its code on top of it
to draw the specific processor parts.
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# Length f0 fλ/4 δf0 ∆f QL Qext

mm GHz MHz 103

0 3.835 7.762 7.514 1.086 6.9 7.2
1 3.804 7.824 7.565 51 1.142 6.6 6.9
2 3.774 7.886 7.630 65 1.129 6.8 7.0
3 3.745 7.948 7.681 52 1.181 6.5 6.7
4 3.716 8.010 7.743 62 1.192 6.5 6.7
5 3.688 8.072 7.795 53 1.234 6.3 6.5
6 3.659 8.134 7.863 68 1.225 6.4 6.6
7 3.632 8.196 7.913 50 1.303 6.1 6.3

Table 6.1: Design parameters of the 8 resonators extracted from electromagnetic simulation
in Sonnet: fλ/4 is the bare resonance estimated from Eq. (6.1), f0 is the simulated one, δf0
is the spacing between the resonator and the previous one, ∆f is the 3 dB bandwidth of the
dip, QL and Qext are the loaded and external quality factors (see text).

6.1.2 Feedline and Resonators

Both the feedline and the resonators are designed as coplanar waveguides (CPW)
with a center conductor width of 10 µm and a spacing of 6 µm to the surrounding
ground plane to match to a 50 Ω impedance. This can be calculated from
elliptical integrals already known for the CPW geometry [Wat94].

The feedline contains two launcher pads: the input port on the left end and
the output port on the right end of the chip, as it is seen in Fig. 6.1a). These
pads will be connected to the PCB via wire bonding.

The readout resonators are designed to be distributed-element λ/4 CPW
resonators, since they are shorted on the feedline end and open on the qubit
end (see Fig. 6.1b)). The open end has a small capacitor pad shape resulting, see
Section 6.1.3b). The specific shape and strength of the qubit-resonator coupling
depend on each qubit.

From the length l = λ/4 of the resonator, its bare resonance

fλ/4 =
c0√
ϵeff

1

4l
(6.1)

where c0 is the speed of light in vacuum and ϵeff is the effective relative electric
permittivity index of a CPW geometry sandwiched between two dielectric sub-
strates. ϵeff can be estimated through ϵeff = 1

2 (ϵ1 + ϵ2) ≈ 6.225 with ϵ1 = 11.45
for Si and ϵ2 = 1 for air. fλ/4 is a good estimation of the real resonance, f0.
However, f0 is shifted due to the interaction with the rest of the device and
needs to be determined by electromagnetic simulation, e.g. with Sonnet.

From electromagnetic simulations with Sonnet, the actual resonance fre-
quency, f0, and the -3dB bandwidth, ∆f (full width at half maximum), can
be extracted. With ∆f , the resonator damping, κ = 2π∆f , can be computed.

∗https://gdspy.readthedocs.io
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Both are relevant parameters for the calculation of the desired dispersive qubit-
resonator coupling χ. In qubit-resonator circuits, such as the one described here,
an optimal signal-to-noise ratio (SNR) is achieved when χ satisfies [Gam07]

χ =
κ

2
. (6.2)

Furthermore, ∆f determines the response time τ of the resonator

τ =
1

2π∆f
. (6.3)

An important measure for the performance of a resonator is its loaded quality
factor QL that is composed of an internal and external contribution which can
be directly inferred from the (measured/simulated) resonance f0 and ∆f :

1

QL
=

∆f

f0
=

1

Qext
+

1

Qint
. (6.4)

Qint is determined by internal losses from the resonator, while Qext originates
from the coupling to the external circuit elements, mainly the feedline. For the
case of superconducting resonators, the dominant internal loss mechanism are
two-level systems (TLS) residing in the interfaces and dielectrics of the CPW,
such that the internal quality factor can be approximated as

1

Qint
≃ tan δ, (6.5)

with the dielectric loss tangent tan δ = 5×10−5 measured for Si CPW resonators
at low temperatures and powers at which they are typically operated [Kru06].
Thus, Qint ≃ 5 × 105 is assumed for all resonators. Then, the quality factor
Qext of the coupling between the feedline and the resonator can be extracted by
using Eq. (6.4).

Table 6.1 gives an overview of the design parameters for the 8 resonators.
The resonator frequencies are separated δf0 ≈ 50 MHz, so that they are easy to
distinguish, as δf0 = f0,i+1 − f0,i ≫ ∆f ≈ 1 MHz. The simulated magnitude
response from the resonators, |S21|, can be seen in Fig. 6.3.

In Sonnet, the metallization layer was set to be a lossless material. The Si
substrate was defined to have a dielectric loss tangent of tan δ = 5× 10−5 while
the conductivity was set to be zero since high-resistivity wafers do not conduct
at cryogenic temperatures.

6.1.3 Capacitance Network Analysis

In the Hamiltonian description, only Csh and CC are taken into account. Csh

defines the qubit α-junction effective shunting capacitance and Cc indicates the
qubit-resonator capacitive coupling. However, in real circuits, capacitances are
not isolated, but a full capacitive network has to be analyzed.
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Figure 6.4: a) Shaded area is where the capacitance network analysis is performed. b) Floating
qubit, coupled to the resonator and the flux line. Four separated metallic areas are defined: 1
and 2 are the qubit pads, 3 is the resonator center feedline and 4 is the ground plane. c) Circuit
schematic of the capacitance network. Cross-capacitances with the Josephson junctions are
not considered in the analysis.
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Figure 6.5: a) Final effective capacitance circuit, where V is the resonator voltage and the
qubit loop with the Josephson junctions is between node 1 and 2. b) Thevenin effective circuit.

In Fig. 6.4, the capacitance network of the floating qubit device is shown†. In
Fig. 6.4b), the four isolated metallic parts that create the capacitance network
are shown. The two qubit pads, 1 and 2, the resonator center line, 3, and the
qubit ground, 4, are the four nodes. In Fig. 6.4c), the corresponding circuit
schematic is shown. It must be noted that in this circuit the cross-capacitances
between the qubit islands and the other elements are not considered.

Two tasks are needed to design the circuit capacitances: first, to relate the
full capacitive network to Csh and CC , and then to simulate the actual design
until the desired parameter configuration is obtained.

6.1.3.1 Csh and CC extraction

The floating qubit considering all the capacitance is depicted in Fig. 6.4c). There
are four nodes, with the ground plane considered as node 4. The voltage in the
circuit represents the resonator voltage between the center line and the ground

†From here on, only the floating qubit configuration is shown. The grounded qubit, which
is simpler, is analyzed in Appendix D
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1

2

3

4

Figure 6.6: The capacitive network of the floating qubit considering only the capacitances,
after removing the Josephson junctions.

plane. The capacitance reduction to obtain Csh and CC should not modify
the qubit loop where the Josephson junction are placed. Thus, the procedure
should leave untouched the connections between node 1 and 2 that are not
purely capacitive. These nodes, 1 and 2, are considered the primary nodes.

The final expected circuit should have the shape of Fig. 6.5a), where the
Josephson junction loop should be located between nodes 1 and 2. In order to
find this effective circuit, Thevenin’s theorem is used[Dor89].

The AC version of the Thevenin’s theorem states that any circuit that con-
nects two terminals which include resistances, capacitances, and inductances
can be represented by an effective circuit consisting on a voltage source in series
with an impedance. For this case, where only capacitances are considered, this
effective impedance is a capacitance, called Cth. The Thevenin circuit is shown
in Fig. 6.5b).

The first step towards finding the Thevenin circuit consists of removing the
junctions in between the primary nodes 1 and 2 from Fig. 6.4c), and considering
the voltage source as a short. This leaves the pure capacitive network as seen
in Fig. 6.6.

Then, the node 4 is reduced via the Y − ∆ conversion, shown in Fig. 6.7.

Figure 6.7: Y −∆ conversion can be used to remove a node only connected via capacitances.
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Figure 6.8: Capacitance network with considered currents for applying Kirchhoff voltage laws.

The resulting capacitances from the Y −∆ conversion are found as

1

C ′
ij

=

∑
k Ck4

Ci4Cj4
, (6.6)

where the indices i, j and k take any value from 1 to 3. C ′
ij is the new capaci-

tance obtained by the reduction of node 4, and Ci4 are the circuit capacitance
connecting any node to node 4.

Then, node 3 is removed by computing the resulting capacitances in series
and parallel, and finally the system is reduced to a single capacitance between
nodes 1 and 2, which is Cth.

The next step is to find the Thevenin voltage, Vth. Since the value of the
resonator voltage is unknown, Vth will be related to an undefined voltage as
Vth = βV . To find Vth, Kirchhoff voltage law must be used for the system, as
depicted in Fig. 6.8.

The Thevenin effective circuit, as shown in Fig. 6.5b), is not the final circuit,
but the circuit in Fig. 6.5a). The obtained Cth and Vth are related to CC and
Csh by finding the effective Thevenin circuit of the final design Fig. 6.5b), which
gives the following relations

Cth =Cc + Csh , (6.7)

Vth =
Cc

Cc + Csh
V . (6.8)

Then, by substituting the values obtained for Cth and Vth as function of
Cij in Fig. 6.4c), the effective values of Csh and CC are obtained. The exact
expressions are rather complex, and are computed numerically.

6.1.3.2 Capacitance Network Design

The full capacitive network was simulated in COMSOL, where one may obtain
all the individual capacitances: C12, C13, etc. on Fig. 6.4c).
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Figure 6.9: Method used to design the qubit-resonator capacitance network.

The target Csh is defined by the qubit design, which is 13 fF for qubit #1
and 8 fF for qubit #2. However, CC is still undefined. For a given resonator
damping κ, an optimal value of the dispersive qubit-resonator coupling χ for
qubit readout can be readily determined from Eq. (6.2). Finding suitable values
of χ that satisfy this condition, however, requires to numerically solve the non-
trivial problem Hamiltonian of the coupled qubit-resonator system, as explained
in Section 5.4.

The simulations performed to obtain χ from the Hamiltonian circuit have
Cc and Csh as input variables, as well as the rest of qubit parameters. First,
the qubit subsystem is diagonalized to obtain its lower-energy states. Then, the
full system is diagonalized by using the lowest energy states of both qubit and
resonator subsystems, thus obtaining the qubit-resonator coupled spectrum and
χ.

The iterative process to obtain the optimal design is schematically shown
in Fig. 6.9. The process consist of designing the capacitances of the circuit
and simulate the full capacitive network in COMSOL. With the values of the
capacitances, CC and Csh are extracted via the Thevenin reduction described
in Section 6.1.3.1. Then, Csh is compared to the target for the qubit designs
and CC is compared to the target one according to the χ simulations and the
previous resonator simulations in Sonnet (Section 6.1.2). The process is iterated
until de values of CC and Csh converge to our desired target. This optimization
protocol is performed manually.

6.1.4 Flux bias lines

A flux bias line is added on each qubit to locally apply flux in the qubit loop. A
coil is placed on top of the sample box containing the device to set a global flux
to all the qubits, and then each qubit is locally biased. This is not strictly needed
for the uncoupled devices. However, the inclusion of these local flux lines pave
the way for future coupled qubit designs where local control is indispensable.

The design of the flux lines can be seen in Fig. 6.2 for both the floating and
grounded qubit on panel a) and b) respectively. The flux bias lines consist of a
50 Ω CPW geometry, with the end of the line shorted in close proximity to the
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qubit loop, see Fig. 6.2. The flux line antenna is slightly displaced with respect
to the symmetry axis of the qubit loop to attain a low mutual inductance,
M = 0.1− 0.2 pH. M is kept low in order not to couple the qubit too strongly
to the ohmic environment coming from the line as discussed below.

The simulations to determine M are performed using FastHenry, a software
that allows to compute inductance of superconductors, considering both geo-
metric and kinetic contributions of the inductance. Kinetic inductance can be
a significant part of the total inductance in superconductors, and is not usually
considered in commercial finite-element software. The simulations can be seen
on Fig. 6.10.

In the case of the floating qubit, a displacement of 4 µm results in M =
0.15 pH. Using Φ =M · I, this yields a flux bias current of I = 13mA required
to induce a single flux quanta Φ0 in the loop. In the experiment, however, a
magnetic coil will set the global flux already close to the qubit sweet spot, Φ0

2 ,
such that the bias lines will only be used to introduce small fluxes of ≈ 1% Φ0

or ≈ 130 µA, which is an acceptable current introduced into the system. This
range is comparable to the range explored during an annealing sequence.

For the grounded qubit, the displacement is 1.5 µm such that M = 0.15 pH.
The distance between the qubit loop and the antenna is 5 µm in both cases
(measured from the center of the leads).

Lastly, similar to the resonator-induced Purcell loss, the inductive coupling
of the qubit to the flux bias antenna represents another loss mechanism. The
energy relaxation rate Γ1,ind and dephasing rate Γ2,ind through this channel can
be estimated to be [Van03]

Γ1,ind ≈ 2(ℏ∆)2

ℏ3ωq

(MIp)
2

R
coth

(
ℏωq

2kBT

)
, (6.9)

Γ2,ind ≈ 4

ℏ2
(MIp)

2

R
kBT. (6.10)

Here, ∆ is the qubit tunnel splitting, R = 50 Ω is the designed impedance of
the inductively coupled flux bias antenna, kB is the Boltzmann constant, T =
20mK is the system temperature, and ωq is the resonance frequency at which the
qubit is operated. For the two qubit designs one can use ∆ = 2π× 1.2GHz and
2π × 2.2GHz and their respective Ip from Table 5.2 to yield energy relaxation
times of T1,ind = 7.0ms and 4.1ms, respectively, as well as dephasing times of
T2,ind = 10.1ms and 11.1ms, respectively. For a more realistic Teff = 100 mK,
T1,ind remains mostly unchanged, but T2,ind reduces to 2.0 ms and 2.2 ms, for
the lower and larger ∆ design respectively. All these coherence times are well
above the expected decoherence lines, around tens of µs.

6.1.5 Qubit loops
A closer look to the qubit loops is given in Fig. 6.11. Both the grounded and
floating loops are almost identical with inner horizontal and vertical dimensions
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(a) (b)

(c) (d)

Figure 6.10: Simulation of the mutual inductance M between the flux bias antenna and the
qubit loop based on FastHenry. 6.10a and 6.10c show the model for the floating and grounded
qubit loop, respectively, while 6.10b and 6.10d show the results.

a) b)

Figure 6.11: a) Floating qubit loop. b) Grounded qubit loop.
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a) b)

Figure 6.12: Redesign of a) floating qubit and b) grounded qubit.

of 9 µm, respectively, and a width 1 µm of the leads. In the case of the grounded
qubit, the vertical dimension is 9.5 µm.

Resulting from the inductance simulations performed in Section 6.1.4, the
qubit loops contain a geometric inductance Lloop between 26.5 and 28.5 pH,
respectively. This value is much smaller than the Josephson inductance LJ =
Φ0

2πIc
= 3 nH of the big junctions, for the designed IC = 109 nA. Thus, it is

reasonable to omit the loop inductance in the Hamiltonian as already claimed
in Section 5.2.

6.1.6 Josephson Junction and Fabrication

The chip is fabricated on a 500 µm high-resistivity Si substrate, while the metal
layer is 100 nm of Al. Fabrication has not been done in-house since junction fab-
rication was being developed at the time of these qubit designs. The fabrication
of the first two generations was performed at the University of Glasgow (UG) by
Dr. Paul Baity at Prof. Martin Weides group. The aluminum overlap junctions
were defined by subtractive process on intrinsic Si substrate. The third and
final design, was fabricated by Dr. Rais Shaikhaidarov at Superfab group led by
Prof. Vladimir Antonov at the Royal Holloway University of London (RHUL).

The junction were shaped according to each manufacturing specific process.
The design shown in Fig. 6.11 is produced, so that shadow evaporation is per-
formed through the Dolan bridge technique [Dol77]. The exact A and JC are
specified according to the evaporation angle. However, the qubits manufactured
in UG adapted the specific junction design to their fabrication technique.

6.1.7 Modifications on designs

A total of three different qubit batches were fabricated. The two first in Glas-
gow and the last one in London. The change in manufacturer, motivated by
aluminum contamination in the Glasgow evaporator, caused a variation in the
junction shape. However, most important, from the first to the second design,
a higher CC was targeted since the first qubits showed a weak dispersive shift.
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# f (GHz) Csh (fF) CC (fF) χ (2π × MHz)
0 7.294 12.9 4.4 6.4
1 7.440 12.5 2.9 2.6
2 7.550 12.9 4.4 6.4
3 7.696 12.5 2.9 2.6
4 7.824 8.7 4.0 4.9
5 7.949 8.6 2.4 1.8
6 8.072 8.7 4.9 4.9
7 8.196 8.6 2.4 1.8

Table 6.2: Table with modified parameters of the designed capacitance, with the corresponding
dispersive shift.

Figure 6.13: Grounded qubit loop of a design of the first generation of device, manufactured
at the University of Glasgow.

The new design, as seen in Fig. 6.12, consisted on bringing the capacitance pad
of the resonator closer to the qubit, compared to Fig. 6.4b). This caused an
increase on CC and, correspondingly, χ.

Moreover, extra space for the ebeam marks had to be given. This all led to
a substantial modification of the capacitance network analysis, and new simula-
tions had to be performed. The final values of CC and χ are given in Table 6.2.

6.2 Device Inspection & Setup

The first devices were manufactured at the University of Glasgow. A qubit
with aluminum overlap junctions can be seen in Fig. 6.13. The two different
evaporation steps are seen with two different shades of the metals.

Figure 6.14a) shows a general image of a grounded qubit from the devices
fabricated in RHUL. The qubit is coupled to a resonator and its dedicated local
flux line. A zoom on the qubit loop can be seen in Fig. 6.14b). There, compared
to Fig. 6.13, the number of junctions do not need to be even because they are
not fabricated with the Dolan bridge technique. In Fig. 6.15, an image of the



148 CHAPTER 6. FLUX QUBIT EXPERIMENTS

25 μm

250 μm

Local flux line

Qubit

Qubit loop

Qubit capacitor pad

Test junctions

Resonator

a) b)

Figure 6.14: a) Microscopy image of one of the chips manufactured in RHUL. Image shows
one of the grounded qubits coupled to a resonator and a dedicated local flux line. On top,
some test junctions are seen. b) Zoom on the qubit loop.

Figure 6.15: Microscopy image a floating qubit device. The e-beam marks are placed where the
shunting capacitor should be. This modifies the shunting capacitance and, most importantly,
the coupling between the qubit and the resonator.

floating qubit is shown.

6.2.1 Chip Packaging

The refrigerator setup can be seen in Chapter 3, with the magnetic shielding
especially relevant for flux qubit experiments. The sample is wirebonded to a
ceramic PCB. The wire bonds connect the central feedline pads and the flux line
local lines (see Fig. 6.1), as well as the ground plane. The PCB is then placed
inside a Cu sample box, which has a dedicated place for attaching a magnetic
coil with a screw. The coil is placed at the center of the sample box, and sets
a global magnetic flux for all qubits, as can be seen in Fig. 6.16. However, the
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Figure 6.16: a) Copper sample box where the device is mounted, inside the mixing chamber
stage of the dilution regrigerator. b) A coil is placed on top of the sample box. The coil sets
the global magnetic flux for all qubits.

individual qubits will experience a different effective mutual inductance to the
coil depending on their relative position and the size of the qubit loops.

6.3 Spectroscopy

6.3.1 First and Second Generation Devices

Spectroscopy measurements are performed prior to provide initial qubit and
resonator frequency characterization. First, a frequency scan identifies the res-
onator frequency, fr, plotted against different coil biases (Fig. 6.17). Qubit
frequency, fq, changes as the flux is swept by the coil current. When fq is res-
onant with fr, an avoided level crossing is observed, such as seen in Fig. 6.18.
The qubit sweet spot is located in between the two avoided level crossings in
Fig. 6.17.

In order to determine the presence of the qubits, the avoided level crossing
with periodicity is identified, as seen in Fig. 6.19. This periodic avoided level
crossing is the benchmark of a qubit, similar to punchout measurements in
transmon experiments. Moreover, by observing a full Φ0 period, a relation
between current and flux can be established. Then, results can be expressed
as a function of Φ, instead of current in the coil, as already implemented in
Fig. 6.19.
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Figure 6.17: Resonator spectroscopy. The flux is tuned by modifying the current that flows
through the coil. The flux qubit changes its frequency with I, and avoided level crossing
occurs when qubit and resonator are resonant.

Figure 6.18: Zoom on the avoided level crossing between the flux qubit and the resonator.

An example of a two-tone measurement is shown in Fig. 6.20. Similarly to
Section 4.2.2, the two-tone measurement consists on sending a varying frequency
tone around the expected fq, while weakly probing a tone with the VNA at
fr. By repeating this measurement at different Φ, the qubit gap, ∆, and the
persistent current, IP , can be determined by fitting

hf01 =

√
(ℏ∆)2 + (2IPΦb)

2
, (6.11)

where Φb = Φ− Φ0/2 is the flux bias. Usually, ℏϵ ≡ 2IpΦb is defined.
Four qubits were correctly fitted, and their values are shown in Table 6.3.

A systematic lower ∆ and higher IP than designed were measured, which could
be both caused by a higher IC of the qubit junctions.



6.3. SPECTROSCOPY 151

Figure 6.19: Periodicity of avoided level crossings is the benchmark of qubit presence. This
also serves to map between I and Φ.

Figure 6.20: Two-tone spectroscopy for second generation chips. The qubit lowest transition,
fq , is observed. This qubit ∆ = 1.02 GHz and IP = 82 nA.

The linewidth of the qubit spectrum observed in Fig. 6.20 is 220 MHz, which
would result in a qubit coherence lifetime < 1 ns, using the uncertainty relation
∆E∆t ≥ ℏ/2. Indeed, in these devices, no succesful time-domain measurement
were achieved.

Later inspection of the fabrication process by the providers (UG) showed
that the aluminum evaporator was contaminated with other metals. Aluminum
TC was measured to be under 1 K, compared with the expected aluminum TC
around 1.2 K. This discrepancy shows that the material used for this qubits
was very dirty, which explains why qubit quality was so low.
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∆th. ∆exp. IP,th. IP,exp.

2π ×GHz 2π ×GHz nA nA
#1 1.17 1.01 47 82
#2 1.17 0.70 47 97
#3 1.17 0.80 47 -
#4 2.22 1.53 45 60

Table 6.3: Qubit spectroscopy results from second chip generation.

Figure 6.21: Two-tone spectroscopy of third generation devices. Several transitions can be
identified. ω01 is much lower than expected, as it corresponds to ∆ ≈ 250 MHz at the sweet
spot. The other transitions that can be seen are a consequence of two-photon processes.

6.3.2 Third Generation Devices

For the third batch of chips, fabrication facilites were switched to RHUL. These
chips, with almost identical design as the previous ones (see Section 6.1), showed
functional qubits.

In Fig. 6.21, two-tone spectroscopy measurement of one of these devices is
shown. The main feature that can bee seen is the f01 transition that goes from
7 GHz to 0.25 GHz. Other transitions can be seen, such as ω02/2 and ω03/2.
ω12/2 can also be seen, which is reduced as the qubit is more biased from the
sweet spot, as it requires initial qubit population in |1⟩. The strength in ω12/2
transition closer to the sweet spot, where fq is lower, indicates more thermal
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Figure 6.22: Zoom on sweet spot for two-tone spectroscopy.

population of |1⟩.
A zoom on the sweet spot is seen in Fig. 6.22, where the resonance can

be traced down to the sweet spot. For this device, the qubit frequency at the
symmetry point is found to be around 250 MHz, much lower than the designed
∆ = 1.2× (2π ×GHz). Preliminary inspection of the devices indicates a higher
IC than designed, which could explain this gap deviation. Moreover, inspection
of the junction areas show an expected α ≈ 0.65, which deviates by > 10%
from the nominal value. Ip is fitted to 58.6 nA in this device, also higher than
nominal 47 nA.

The spectroscopy results indicate that qubits are manufactured with a no-
ticeable deviation from the designed Hamiltonian. This is specially significant
in the qubit gap, ∆, that is reduced up to a few hundreds of MHz. For these
frequencies, the qubit is expected to have a large thermal population, and its
control can be more challenging.

Extracting the fabrication parameters from the results is not an easy task,
unlike with transmon qubits. However, since several transitions have been iden-
tified, a full circuit analysis can be performed to predict the circuit parameters.
At this point, María Hita at Dr. Juan José García Ripoll at CSIC is working
on this parameter extraction.

6.4 Flux Qubit Coherent Control

6.4.1 Rabi oscillations

Similar to the transmon measurements in Section 4.2.3, the Rabi oscillations
presented here are the first-ever time-domain experiments performed on flux
qubits at IFAE. Thus, these oscillations constitute an important milestone in
the project of building a quantum annealer.

In Fig. 6.23, Rabi oscillations for the qubit at 6.65 GHz and f = 0.47 external
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Figure 6.23: Rabi oscillations prior to any pulse optimization. Rabi sequence and flux location
on top of the figure. Data points in gray circles and fit in dashed blue line.

flux are performed. These oscillations show that the 2π pulse does not return
all the population to |0⟩, meaning some loss by driven evolution, either through
energy decay or dephasing. Studying the decay of these oscillations, as done in
Section 6.4.4, would give insights of the dominant decay mechanism.

This first Rabi experiment allows for a preliminary π-pulse and fq cali-
bration. The readout setup is to be optimized prior to obtain the coherence
characterization of the qubits.

6.4.2 Readout calibration

Once coherent control of the qubit is achieved, the readout pulse can be opti-
mized. The main goals of this optimization are to increase the signal-to-noise
ratio (SNR) and to ensure that the photon number in the resonator is low
enough to avoid qubit excitations.

The readout calibrations shown below are obtained for f ≈ 0.486, but has
to be performed for every different flux. The qubit-resonator coupling is mod-
ified at the different flux locations, which changes the specific optimal readout
location. This is especially relevant for the readout frequency, since it depends
strongly on the dispersive change, which can change noticeably along the whole
flux range.

6.4.2.1 Readout frequency calibration

The readout driving frequency, fd, is optimized to yield the largest qubit sig-
nal by measuring a resonator trace with and without a π pulse on the qubit
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Figure 6.24: Readout frequency calibration. The pulse sequence (top) consists of reading out
the qubit state at different readout frequencies and comparing the results when the qubit is
at |0⟩, and when a π pulse sets the qubit initally at |1⟩. This calibration is performed at
f = 0.486, as shown on top right. a) Readout voltage magnitude when the qubit is in |0⟩
(dark blue triangles) and |1⟩ (light blue squares). b) Readout phase when the qubit is in |0⟩
(dark blue triangles) and |1⟩ (light blue squares). c) Readout voltage magnitude difference
between the qubit in |0⟩ and in |1⟩. d) Readout phase difference between the qubit in |0⟩ and
in |1⟩.

(Fig. 6.24). At the top of the figure, the readout frequency calibration sequence
is shown, where the complex readout response is measured at different ff , with
the qubit population in |0⟩, and then with the qubit population in |1⟩ after a
π-pulse.
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Figure 6.25: Readout power calibration. Rabi sequences at different readout powers, which
shows better SNR for the lowest power, at −32 dB.

The transmitted signal for both cases is shown in Fig. 6.24a) and the phase
response in Fig. 6.24b). By subtracting the two traces from different qubit
populations, the optimal operation point is identified for both magnitude mea-
surement (Fig. 6.24c)) and phase measurement (Fig. 6.24d)). The two optimal
operation points are different and, indeed, the optimal phase difference is usually
located where the magnitude measurement is minimal. Thus, only one of the
two measurement types can be optimized. The phase measurement is chosen,
since the SNR is known to be higher [Gam07] and already gave better results
in spectroscopy for this device.

The fr calibration also allows to measure the dispersive shift, χ, as will be
explained in Section 6.4.3. In this measurement, 2χ = 1.5× (2π × MHz).

6.4.2.2 Readout power calibration

Large readout pulse power can lead to more output signal, which could be better
for higher SNR. However, too many photons in the resonator may can induce
qubit-state transitions that lead to lower measurement fidelity from decay or
excitation during the measurement, as already explained in Section 4.2.4.1 for
transmon qubits.

In Fig. 6.25, Rabi oscillations are seen for different input power attenuation.
The attenuation is added after the pulse generation. Higher powers lead to
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Figure 6.26: Readout amplitude calibration. Sequence on top, readout phase difference for
states |0⟩ and |1⟩ is shown for varying a varying resonator amplitude pulse placed between
qubit and readout pulses. No change in readout efficiency shows no photon-induced qubit
transition are excited.

the lowest SNR, while for lower powers than −32 dB attenuation, the Rabi
oscillations have the highest SNR.

In Fig. 6.26, a sequence is shown where the qubit population is initialized in
|0⟩ or in |1⟩, this latter obtained with a π-pulse. Then, a resonator tone is sent
at varying amplitude and, finally, the readout tone is sent. If the first fictitious
readout tone caused any decay or excitations, this should be seen as a reduction
on the phase difference. As shown in Fig. 6.26, no noticeable difference is seen
over the whole range of amplitudes used, and the fluctuations are within the
noise range. This implies that for this particular setup the readout power is fit
for qubit measurements.

6.4.2.3 Readout duration calibration

In general, the shorter the readout pulse, the faster the sequence can be made
and the faster the computer communication with both the digitizer and AWG
will be. This reduction in time is very important, since, as no qubit reset is
applied, the repetition time has to be increased to ensure that the qubit has
fully decayed to |0⟩.

In Fig. 6.27, the readout sequence is shown, together with the measured
resonator response. Similar to readout power calibration, two sequences are
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Figure 6.27: Readout pulse length calibration. Sequence on top, the difference in readout
phase between qubit in |0⟩ and in |1⟩ for a readout pulse of varying duration. The optimal
point is achieved around 1 µs.

performed, one with an initial π pulse and the other one with the qubit left
in |0⟩. Then, the readout pulse is varied in length. Looking at the difference
between both, the optimal pulse duration is set to be 1 µs for this experiment.
At low readout duration, not enough signal is collected and both states output
similar results. This readout difference increases until an optimal point, and
then it starts to decrease, probably limited by qubit decay during readout.

6.4.3 Resonator Dispersive Shift

The calibration of the readout frequency also returns the value of χ, as seen in
Section 6.4.2.1. In Fig. 6.28, χ is plotted for different flux biases, together with
the qubit frequencies. As already showed in Section 5.4,

χ =
1

2


∑

j ̸=0

(χ0j − χj0)−
∑

j ̸=1

(χ1j − χj1)


 , (6.12)

with terms χij are

χij =
|gij |2

ωij − ωR
≡ |gij |2

∆ij
, (6.13)
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Figure 6.28: Resonator dispersive shift, χ, for different flux values in blue squares (left axis).
In gray circles (right axis) the qubit frequency is also plotted, and the dotted gray line indi-
cates the resonator frequency. As expected, the closer both frequencies get, the higher is the
dispersive shift. Closer to the symmetry point, χ almost vanishes, making it very difficult to
measure the qubit.

where ωij is the qubit transition frequency between levels j and i keeping the
corresponding sign. gij is the coupling element matrix for the qubit-resonator
system.

As seen in Fig. 6.28, χ increases in magnitude the closer fq gets to fr, which
would indicate that term χ01 is dominant, unlike the simulations where χ12 was
the most important term. This can be caused by the large deviation between
measured qubit transitions and the designed ones. Moreover, χ vanishes when
close to the symmetry point, which makes very challenging measuring the qubit
state at that point.

6.4.4 Rabi oscillations decay time

In Fig. 6.29, time-domain Rabi oscillation are shown is seen at two different
flux bias points of the qubit away from the symmetry point. The Rabi decay is
considered to be

A(t) = ARabi(t) cos (Ωt+ ϕ0) , (6.14)

where ARabi(t) is an exponentially decaying envolvent, if quasistatic noise is
neglected [Yos14], and Ω is the Rabi frequency and ϕ0 the initial phase. ARabi

decays as
ARabi(t) = A0exp (−ΓRt) , (6.15)

where A0 is the initial Rabi oscillations amplitude and

ΓR =
3− η2

4
Γ1 + ΓfRabi

(6.16)
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Figure 6.29: Two Rabi decay traces for different qubit frequencies: a) fq = 5 GHz and b)
fq = 3 GHz. Both sequences consist in a Rabi sequence where the qubit pulse is changed in
duration (see sequence on top), and the flux location is shown on top of the figures. Data
points are shown as light gray circles, while fit is shown on blue dashed line.

with η = δf/fRabi being the ratio between the detuning driving frequency,
δf = fdrive−fq, and the Rabi frequency, fRabi. Γ1 = 1/T1 is the qubit decay rate
and ΓfRabi

is the decay rate caused by the low frequency noise at fRabi. ΓfRabi

contains low-frequency noise that causes dephasing. Therefore, it describes
dephasing at different fRabi, so it can be used as a noise spectrometer in the
kHz−MHz regime [Byl11].

For both flux points shown in Fig. 6.29, the Rabi decay is considerably fast,
which could be caused either by Γ1 or ΓfRabi

. The fact that there is a factor 2
in the decay rate between both qubit frequencies means that the qubit is more
exposed to decoherence at 5 GHz, than at 3 GHz. It is expected that qubit
T1 increases for larger ϵ/ωq as the qubit dipole to flux decreases [Yos06]. This
implies that the term ΓfRabi

dominates the decay, probably due to enhanced
flux noise or Purcell emission to the resonator. For properly identifying the
origin of decoherence, T1 and T2 measurements at different frequencies will be
performed.
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Figure 6.30: Rabi oscillations at fq = 7.1 GHz. The behavior strongly deviates from usual
Rabi oscillations, probably caused by the enhanced interaction with the resonator due to both
frequencies being close together (see top right for flux location).

6.4.5 Rabi oscillations for different frequencies.

Rabi oscillations could not be observed throughout the whole qubit spectrum.
At fq > 6.5 GHz, oscillations are poor, and the behavior heavily deviates from
a squared cosine as can be seen in Fig. 6.30. This can be caused due to the close
proximity with resonator frequency, around 7.5 GHz, causing strong Purcell
emission and even coherent dynamics with the resonator.

At very low qubit frequencies, lower than 1.6 GHz, no sign of Rabi oscilla-
tions is seen. The resonator naturally acts as a filter to frequencies away from
the resonance. Very low frequencies are heavily filtered by the resonator, requir-
ing more and more power to excite the qubit. At some point, the microwave
source cannot produce more power and the qubit pulse is required to be very
long. If Rabi decay, as shown before, is fast, long pulses are not effective. Thus,
controlling the qubit at low frequencies becomes very challenging.

Another reason for not observing Rabi oscillations at low frequencies could
be thermal excitations. 25 mK correspond to ∼ 500 MHz, higher than the qubit
gap. Moreover, it is believed [Zmu12] that real electronic temperature is higher
than the measured one with usual thermometers, which could lead to a high
excited state population, leading to Rabi oscillations with a very low contrast.

6.4.5.1 Reset protocol

Actively resetting the qubit population could be an alternative to detect qubit
coherence at the symmetry point where ∆ ≲ kBT . However, the method [Gee12]
used in transmon experiments in Section 4.2.4.4 could not be performed.

In Fig. 6.31, it is seen how fq is modified when a π-pulse is applied at the
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Figure 6.31: Qubit frequency modified by the resonator photons. The sequence consists on
sending a π pulse at the same time as a resonator pulse, before the readout. The resonator
pulse is varied in amplitude. For higher values, the qubit frequency gets Stark-shifted by the
resonator photons, so the π pulse qubit frequency gets modified.

same time as a resonator pulse of increasing amplitude. The qubit is biased at
f ≈ 0.481, for leveraging the higher χ. When more photons are added into the
resonator, fq → f ′q = fq + δfq with

δfq =
2χnphotons

2π
. (6.17)

Then, the blue (low phase) part in Fig. 6.31, which corresponds to the excited
population peak after the π-pulse, is obtained at f ′q. However, it can be seen
that while f ′q is modified, there is also a strong reduction in amplitude.

The small dispersive shift, 2χ ≈ 1.5 × (2× MHz), compared to the qubit
linewidth ∼ 5 MHz, requires many photons to modify noticeably fq, as seen
from Eq. (6.17). This large nphotons can induce qubit transitions, as commented
in Section 6.4.2. A larger χ or a more coherent qubit for instance if one could
measure at the symmetry point, could allow to perform the reset protocol.

6.4.6 T1 measurements

A single trace of a T1 measurement at fq = 3 GHz is shown in Figure 6.32,
with T1 = 14.5 µs. However, T1 is known to vary over time [Kli18] so, in order
to have a good estimate for T1 measurements, repeated measurements must be
performed.



6.4. FLUX QUBIT COHERENT CONTROL 163

fq

fr

���

T1=14.5 ± 0.7 μs

0.49 0.5
f

fq (GHz)

1
2
3
4
5
6
7

0.51

Figure 6.32: Single trace of a T1 measurement performed at qubit frequency fq = 3 GHz. The
T1 sequence is shown on top, along with the bias point where the qubit is operated.
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Figure 6.33: a) T1 histogram for a fq = 6 GHz. The T1 measurement is repeated 256 times.
b) Average of all the traces in the histogram. Flux location is shown on the right.

In Fig. 6.33a), the collected histogram of T1 measurement for fq = 6 GHz is
shown. 256 measurements, each with 5000 averages, are plotted. The distribu-
tion resembles a Gaussian distribution, with a mean of 25.6 µs. For this case,
the fit of the average of all the traces Fig. 6.33b) gives nearly the same T1 value.

Figure 6.34 shows the same plot as before, but for fq = 4 GHz. In this
case, the distribution deviates more strongly from a Gaussian, which leads to a
higher fit uncertainty. The value obtained with the histogram fit, T1 = 30.6 µs,
deviates from the fit of the averages of 100 traces (each averaged 5000 times),
which is T1 = 41.7 µs. This can be explained due to asymmetry in the histogram
distribution, which has some higher T1 values.

T1 measured for different f is shown in Fig. 6.35, for both the histogram
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Figure 6.34: a) T1 histogram for a fq = 4 GHz. The T1 measurement is repeated 100 times.
b) Average of all the traces in the histogram. Flux location is shown on the right.

Histogram
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Figure 6.35: T1 measurement for different qubit frequencies. Light blue circles represent the
T1 obtained by the histogram fit, while the dark blue squares represent the whole average fit.

method and the full average trace. The histogram method tends to give lower
values, but both have the same non-monotonic behavior, where T1 decreases in
both extremes. For fq > 6 GHz, qubit frequency is closer to the resonator one,
fr ∼ 7.719 GHz. Therefore, the qubit-resonator coupling increases, potentially
leading to Purcell-induced decay. Purcell decay rate, ΓP , can be estimated as

Γp =

(
g

∆qr

)2

κ , (6.18)

where g is the qubit-resonator coupling, ∆qr = fq − fr and κ is the resonator
linewidth. For the f = 0.47 point in Fig. 6.35, fq = 6 GHz and κ = 3.6 ×
(2π × MHz). g can be obtained from the dispersive shift, as χ = g2/∆qr. At
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Figure 6.36: Ramsey oscillations measurement trace at qubit frequency fq = 6.4 GHz. The
Ramsey sequence is shown on top and the flux location on the top right.

that flux location, χ = −2.7× (2π ×MHz). This corresponds to a Purcell decay
T1,P ≈ 28 µs, consistent with the observed results.

For f closer to 0.5, a low fq < 2 GHz has higher thermal population, which
affects both excitation and decay mechanisms. The thermal relaxation rate,
Γth, can be expressed as [For16]

Γth = Γ0(1 + nth) , (6.19)

where Γ0 is the decay rate due to quantum noise and nth is the thermal quasi-
particle population, defined as

nth =
1

eℏω/kBT − 1
. (6.20)

For ω = 250 × (2π ×MHz) and considering Teff = 100 mK, the natural decay
is enhanced by a factor 1 + nth ≈ 9. Moreover, at the symmetry point, the
transition dipole is largest, and so is Γ1.

The obtained values of T1 are comparable or better than typical results in
flux qubits [Yan15; Byl11]. However, the value at the sweet spot is the lowest,
and most of T1 data in the literature has been obtained for this spot.

6.4.7 T2 measurements

T2 measurements are the standard approach to measure dephasing, as Ramsey
decay depends on both T1 and pure dephasing, Tφ. If both T1 and Tφ are
assumed to be exponential [Kra19],

1

T2
=

1

2T1
+

1

Tφ
. (6.21)
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Figure 6.37: Ramsey fringes plot with sequence on top. It consists on Ramsey measurement
traces for different qubit frequency pulses. Measurement shown Fig. 6.36 corresponds to a
trace of this plot.

These measurements were much more challenging for these qubits as T2 ∝
(ϵ/fq)

−2. Far from the sweet spot, where all the successful Rabi measurements
have been performed, T2 is expected to be very low due to 1/f flux noise. This
is also consistent with the assumption that the small TRabi is caused by the
same noise that origins dephasing, since T1 is very high.

Indeed, it was considerably difficult to perfomr a Ramsey measurement at
many flux values. Moreover, typical Rabi pulses used for T1 and amplitude Rabi
oscillations were ∼ 30 ns large, which represent a very long time for dephasing
to degrade the qubit state. Instead, very short pulses were needed to perform
Ramsey measurements. In Fig. 6.36, a Ramsey trace is shown, with the sequence
shown on top (see Section 2.7.2). The fitted exponential decay leads to T2R =
13.4 ns, which is a very low value. Since T1 ≫ T2R, the dephasing time is
Tφ ≈ T2R (see Eq. (6.21)).

In Fig. 6.37, a Ramsey fringes experiment is shown. Ramsey fringes are a
series of Ramsey measurements at different qubit driving frequencies, and used
to identify the actual fq, which is the point where no oscillations are observed
as a function of time. The fact that very short pulses are needed for such a
small decay time, causes a qubit resonance linewidth of ∼ 40 MHz.

The rapid decay of the Ramsey fringes indicate that dephasing is very high,
which is likely caused by flux noise. One solution would be to reduce IP , whose
value was higher than designed. Also, extra shielding in the setup could help
to reduce overall flux noise. Finally, it is needed to observe these fringes at the
sweet spot to have more insights about the origin of the noise.
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6.5 Conclusions & Outlook
Flux qubits presented in the previous chapter have been physically designed
and manufactured in two different fabrication facilities. In the third generation
of devices, time-domain measurements have been successfully performed, which
has given insights on how to improve the designed flux qubits.

Large T1 over many parts of the qubit spectrum are a promising result
for quantum annealing. However, low T2R and the difficulty to measure at
flux values close to the sweet spot indicate that some improvements must be
implemented. A detailed flux-dependent noise analysis would give insights on
which are the most prominent errors, although flux noise seems a plausible
responsible given the low T2R.

The qubit ∆ strongly deviates from design, which indicates that there has
probably been some fabrication deviation from nominal values. Therefore, the
analysis on the thermal noise for the designed gaps as not been achieved. More-
over, the distinction between floating and grounded qubit loops is still work in
progress, as only floating devices has been successfully characterized.

From the results, it is clear that a large ∆ should be aimed to reduce potential
thermal noise. However, it has been seen that the experiment would benefit from
a higher χ, which can easily be obtained by increasing the coupling between
the qubit and the resonator. Moreover, these large χ, together with higher
coherence, could enable to perform a reset protocol that could enable to operate
at the symmetry point, even for lower ∆.

The first improvement requires is to have a better fabrication process to
attain qubit values closer to the nominal ones. Otherwise, it is difficult to
analyze the Hamiltonian design, as the extraction of the parameters from the
spectrum is not trivial. Then, in order to measure at the sweet spot, both χ
and ∆ has to be increased. Controlling the qubit through the flux line could
also help in this regard to overcome the resonator filtering. Finally, it may be
needed to further reduce IP or increase the magnetic shielding environment to
achieve larger dephasing times.

The results in this chapter pave the way for future designs of a quantum
annealer processor. Coupling qubits can be achieved by adding a rf-SQUID in
between two qubits[Web17], without modifying the rest of the physical design.
Moreover, if the qubit can be measured at the sweet spot, single-qubit annealing
schedules can be performed, and understand the noise mechanisms that affect
the qubit during the anneal passage.
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Chapter 7

Magnetic Penetration Depth
of Aluminum
David López-Núñez, Queralt Portell Montserrat, Gemma
Rius, Elia Bertoldo, Alba Torras-Coloma, M. Martínez,
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Superconducting aluminum is arguably the most used material in superconduct-
ing qubits [Bro23; Kim23; Bla21; Pér21]. However, its thin-film characteristics
are not yet fully characterized. This chapter focuses on studying the magnetic
penetration depth, λ, of aluminum as it changes with film thickness. λ is a
very important parameter that defines the kinetic inductance, Lk, of the mate-
rial, becoming very important in flux-sensitive devices, such as flux qubits and
couplers. Moreover, along with the coherence length, ξ, it defines the type of
superconductivity of the material.

Section 7.1 gives a brief recap on superconductivity theory. The focus of this
introductory section is to define the superconducting length scales, λ and ξ, how
their relation shapes the superconductivity type, and the thickness effects on
them. Many of the concepts introduced in this section are usually overlooked in
superconducting qubit circuit design, which sometimes leads to inaccuracies in
the circuit parameters, particularly in circuits that depend on kinetic inductance
value.

In Section 7.2, the experimental model is presented, and details how λ is
determined from the measurements: both through resonator and 4-probe resis-
tance measurement. This resonator model requires precise determination of the
inductance and capacitance used to determine λ. These resonators are simulated
with Sonnet in Section 7.3. Then, the final designs are shown in Section 7.4.

The experimental description along with the fitting analysis is explained

∗Part of the contents of this chapter are being published, currently in preprint
arXiv:2311.14119.
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Figure 7.1: a) Type-I superconductors, where response to the external magnetic field is non-
local. Each Cooper pair reacts to the magnetic field at its center of mass, since the average
Cooper pair size ξ is much larger than the typical distance at which the magnetic field decays,
λ. This effectively reduces the field response, allowing the magnetic field to penetrate further
into the material, thus increasing the penetration depth. b) In type-II superconductors, ξ is
smaller than λ, and the response is local, since both electrons of the Cooper pair are very close.
c) Schematic representation of a local thick superconductor, where the London equations are
valid. The current response to the magnetic field follows j⃗S = −µ0

λ2 A⃗S . d) In very thin films,
the Cooper pair number density is lower, and each Cooper pair has to increase its velocity to
provide the same supercurrent j⃗S as in thicker films, since London equations are still valid.
The kinetic inductance increases dramatically in this situation, as it is proportional to the
squared velocity, Lk ∝ v2.

in Section 7.5. The results of the experiment are explained in Section 7.6,
where λ dependence on thickness, d, is shown. Furthermore, an estimation
on the critical thickness, dcr, at which the superconducting types change for
aluminum is given, along with an analysis of the design variability. The results
are discussed in Section 7.7, and final conclusions and future work are detailed
in Section 7.8.

7.1 Theoretical Background

In general, the superconductivity type exhibited by a given material reflects the
interplay between the magnetic penetration depth λ and its coherence length
ξ, which corresponds to the average distance between the electrons forming a
Cooper pair [Pip53].

The thickness of a thin film affects its internal microscopic structure, modify-
ing both λ and ξ and the rest of parameters that depend on them. In particular,
the kinetic inductance Lk has a strong dependence on λ through [Rot16; Mat58;
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Kau08; Tur91]
Lk = Lk,sN = µ0λN , (7.1)

where Lk,s is the surface kinetic inductance, or kinetic inductance per square,
which depends on the film thickness d. N is the number of squares of a given
wire. For wires with constant cross section, we have N = l/w, where l and w
are the wire length and width, respectively. Otherwise, N becomes a position-
dependent parameter.

In bulk aluminum, the response of the superconductor to magnetic fields is
non-local [a qualitative picture is given in Fig. 7.1a)], causing a larger value of
λ than the one predicted by the London equations λL = 15.7 nm. Since the Al
bulk coherence length is ξ0 = 1.6 µm ≫ λL, bulk aluminum is in the non-local
limit. In the non-local limit, λ is modified by [Gen18]

λ = 0.65(λ2Lξ0)
1/3, (7.2)

which, in the case of aluminum, is λbulk = 50 nm [Gen18; Fab55]. Thus, bulk
aluminum satisfies type-I superconductivity criteria, ξ0 > λbulk.

However, decreasing the film thickness d eventually decreases the aluminum
grain size as well[Mes71], thereby reducing the electron mean free path, l. In this
regime, an effective coherence length ξ < ξ0 at T = 0 K can be defined [Sai69;
Gen18]

1

ξ
=

1

ξ0
+

1

l
, (7.3)

which, in the dirty superconductor limit ξ0 ≫ l, also modifies λ as

λ = aλL

√
ξ0
l
. (7.4)

a is of order unity which depends on the surface scattering type, being 4/3 ≈
1.33 for diffusive scattering and

√
4/3 ≈ 1.15 for specular reflection [Tin04].

Eq. (7.4) is a reasonable approximation, particularly when l ∼ d. Accordingly,
by lowering d, one may reach the regime where ξ < λ, causing the film to
become a type-II superconductor, where the response to external fields is local
[see Fig. 7.1b)]. The transition between superconductivity regimes is determined
by the Ginzburg-Landau parameter κ [Tin04]

κ ≡ λ/ξ. (7.5)

Above κ = 1/
√
2, the superconductor can be categorized as type-II since the

normal-superconductor interface energy becomes negative, thus allowing for the
generation of normal paths (vortices) [Abr57]. For thick enough films, κ de-
creases below 1/

√
2 and the film exhibits vortex-free behavior, thus entering the

type-I superconductivity regime. By carefully choosing the thicknesses of dif-
ferent thin films, this boundary between superconductivity types occurring at a
critical thickness dc may be attained. In actual thin films, local fluctuations in
κ are expected given the disordered nature of the film, thus leading to a spread
of values of dc over which the transition takes place.
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For very thin films with thickness in the range of d ≲ λ, the response of
the film to external perpendicular magnetic fields follows the London equations,
reacting with an opposing current j⃗S to an incoming field A⃗S . Since d ≲ λ,
A⃗S fully penetrates the film. Nevertheless, the expression j⃗S = −µ0

λ2 A⃗S remains
valid [Pea64]. In this scenario, the supercurrent response to A⃗S is the same re-
gardless of the film thickness. However, as thinner films contain a lower amount
of charge carriers, Cooper pairs are compelled to attain higher velocities, result-
ing in a substantial increase in Lk (see Fig. 7.1d), since Lk ∝ v2. The correction
to Lk,s due to this effect is given by [Kau08]

Lk,s = µ0λ coth
d

λ
≡ µ0λthin , (7.6)

where λthin represents an effective penetration depth. For d ≫ λ, λthin → λ,
while for d ≪ λ, λthin → λ2

d , significantly enhancing Lk,s. Resonator measure-
ments, as will be detailed in the next section, give direct access to Lk, which
can be used to derive λthin through Eq. (7.6), and then used to calculate λ.

Finally, λ can be related to the normal metal properties of the thin film as
it ultimately depends on the charge carrier properties. Specifically, in the dirty
limit with ξ0, λ≫ l, λ is related to the normal state resistivity ρn of the metal
at T = 0 K, through [Hak67]

λ ≃ 105 nm

√
ρn(mΩ cm−1)

Tc(K)
, (7.7)

where Tc is the superconducting critical temperature. Therefore, for each given
thickness d, the value of λ estimated through Eq. (7.6) can be validated against
the values of resistance of thin films of the same nominal thickness d.

Equations (Eq. (7.6), Eq. (7.7)) allow a complete characterization of λ and Lk

of thin superconducting films, and are the key expressions used in this chapter.

7.2 Methodology
Following from the previous section, two independent approaches are employed
to measure λ in aluminum thin films, along with Lk,s. The first method involves
resonator measurements combined with finite-element simulations, where the
effect of λ is reflected in the measured resonance frequency. The second approach
utilizes four-probe measurements on resistive aluminum meanders.

The resonator measurements give access to λ through λthin, while the re-
sistance measurements give direct access to λ. Fabrication inaccuracies affect
both methods differently. Discrepancies between nominal and real dimensions
are much more difficult to track in resonators than in four-probe designs. λthin
is also much more sensitive to deviations in the thickness d. Resistance measure-
ments are, thus, more robust. However, we include resonators in this work as
they represent a good benchmark of a real-case scenario where calibrated values
of λ are used to predict the values of Lk of a resonator circuit. Therefore, the
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Figure 7.2: a) LC Resonator circuit schematic. In the simulations conducted, no kinetic
inductance is considered, while in the experiment the kinetic inductance Lk contribution
appears merged with the geometric inductance Lg . b) Simulated and experimental resonances
are assumed to only deviate due to Lk.

resistance measurements in this study are in fact used to validate the resonator
measurements.

7.2.1 Resonance Method

Lumped element LC resonators were chosen for this study in order to achieve a
more controlled definition of their inductance L and capacitance C, compared
to distributed resonators. LC resonators are characterized by their resonance
frequency ω = (LC)−1/2, where C represents the capacitance and L = Lg + Lk

is the sum of geometric and kinetic inductances. As explained in Section 7.1,
superconductors may exhibit a significantly high Lk, especially for thin films
with d≪ λ.

In order to extract Lk, we first perform an accurate simulation of each res-
onator studied considering a perfect conductor, thus obtaining Lg and C that
lead to a simulated resonance frequency fsim [Figure 7.2 a) with Lk = 0]. Res-
onator measurements provide fmeas as they contain a total inductance L =
Lg + Lk [Figure 7.2 a)], so fsim > fmeas. Lk may be then obtained with

Lk = Lg

(
f2sim
f2meas

− 1

)
. (7.8)

The Lk obtained in this way determines λthin using Equation (7.6). This
method requires a precise simulation of the perfect conductor resonance fsim
(see Section 7.3).

7.2.2 Resistivity Method

Resistance measurements directly lead to λ through Eq. 7.7. Since ρn is the
normal state resistivity at 0 K, it can only be measured by destroying the
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a) b)

Figure 7.3: a) Initial LC resonator design in Fasthenry for α predictions. b) Estimation of λ
at different thickness for Fasthenry simulations.

superconducting state with an external magnetic field. However, the aluminum
resistivity is nearly constant at low temperatures, so we instead approximate ρn
with the value at 4 K.

It is important to note that ρn is connected to λ and not to λthin as in
the resonator method. ρn and λ are connected through the properties of the
material, such as the charge carrier mass, the Cooper pair number density, and
the electron mean free path. Thus, the thin-film effects described in Eq. (7.6)
do not play a role in the determination of λ through ρn.

7.3 Resonator simulations

An accurate determination of λ through resonator measurement, requires precise
simulations to obtain fsim with Eq. (7.8). In this section, the whole body of
simulations are exposed, which constitute an indispensable part of this work.
Noticeably, these simulations highlight the role of the thickness on the Lg, which,
similarly to Lk, increases for decreasing thicknesses.

The design of the resonators as described in Section 7.4 have been performed
parallelly to results obtained through the simulations. Thus, some design deci-
sion are developed here, leaving the final design parameters for Section 7.4.

7.3.1 FastHenry Simulations

Resonance measurement allow to indirectly compute λ by the extracted value
of Lk. Therefore, the kinetic inductance fraction of the resonators, α ≡ Lk/L,
need to be sufficiently high for a proper estimation of Lk. We work in the range
α = 0.02− 0.5, as lower α can incur in big inaccuracies, while higher α leads to
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frequencies lower than our experimental system bandwidth (4 − 8 GHz). This
α restrictions have to be fulfilled for the full thickness range considered in the
work, which would be between 25 nm and 200 nm.

Before the final design, a prior estimation of α has to be performed. These
initial simulations are performed with FastHenry∗, a software used for calculat-
ing inductance that includes London equations so that both Lg and Lk.

The initial design considered for these simulations is shown in Fig. 7.3a),
which consists of an LC resonator with meander inductor and finger capaci-
tances. At this point, the number of meanders and fingers, along with its exact
dimensions are yet to be determined.

FastHenry needs λ as an initial parameter, which is the goal of the study. A
prior assumption is made by using some previous internally estimated values of
λ at 25 nm and 50 nm thickness, and the known λbulk = 50 nm. The functional
behavior is considered to be a decaying exponential, as shown in Fig. 7.3b).

The outcomes of these simulations results in the determination of the induc-
tor shape, which consists of 15 meanders of 4 µm width and gap between the
lines. The capacitor fingers later simulated should add to a resonance frequency
of ≈ 7 − 8 GHz. This inductor shape results in α = 0.47 for 25 nm thickness
and α = 0.03 for 200 nm. These resonators are labelled as medium resonators,
(MR).

In order to have some flexibility in case prior λ estimation was considerably
wrong or if future designs intend to explore thickness regions further away from
the 25 − 200 nm, two extra designs are considered. The small resonators (SR)
have 2 µm meander width and spacing, and the large resonators (LR) have
6 µm for the same dimensions; both SR and LR having also 15 meander. The
SR resonators have a considerably larger α aiming at very thick designs where
Lk is reduced due to the decrease of λ. Large resonators, on the other hand, are
intended to very thin samples, where very large λ can bring the LC resonance
lower than 4 GHz, thus not allowing for our experimental setup to measure it.

Finally, the design variation is also intended to reduce systematic deviations
in the λ determination due to discrepancies between nominal and real design.

7.3.2 Sonnet Simulations

An entire resonator simulation to obtain the system transmission is run with
Sonnet†. Sonnet is a 2D finite-element solver commonly used to simulate the rf
response of superconducting circuit structures.

For the rest of the section, the simulation of the MR resonators is exposed,
unless specified otherwise. Similar results are obtained for the SR and LR
resonators. The specific design of all the resonators is described in Section 7.4.

∗We use the version found in http://www.wrcad.com/ftp/pub/fasthenry-3.0wr-
071720.tar.gz which takes into account the London equations and thus the penetration depth
λ in the inductance calculations.

†https://www.sonnetsoftware.com/
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Figure 7.4: a) Simulated structure in Sonnet, consisting on a CPW feedline coupled to a LC
resonator. Ports are located on the edges of the feedline. b) Zoom on the resonator structure.
c) Sonnet layers, with Silicon at low temperature (LT) as the dielectric substrate and air on
top. Aluminum is modelled as a perfect metal to model superconductivity.

7.3.2.1 Basic Simulation

The simulation design, as shown in Fig. 7.4a-b), consists of an LC resonator
coupled inductively to a coplanar waveguide (CPW) feedline. The meander
inductor from the resonator is the same as the decided with the FastHenry sim-
ulations. The capacitance fingers share the same dimensions with the meanders,
4 µm in width and spacing, and their number is to be determined so that the
desired frequencies, 7−8 GHz is obtained. The CPW feedline have 10 µm width
and 6 µm gap for a characteristic impedance Z0 = 50 Ω.

The feedline and the resonator are inductively coupled, and placed 40 µm
distance apart, so that mutual inductance is small so that it does not play a big
role on the resonator inductance. Also, the resonator is considerably detached
for the ground plane, at 150 µm, so that also capacitance to ground can be
disregarded, and the resonance is purely determined from resonators L and C.

The layer structure, shown in Fig. 7.4c), consists of high resistivity Silicon
in the substrate, with aluminum, modelled as a 2D perfect metal layer, on top.
Simulations performed with a perfect metal are a good approximation to the
superconducting response with Lk = 0. Thus, the comparison between the
simulations and the experiment can be considered to be caused by the effect of
Lk.

The silicon used in the simulations has an ϵr = 11.45, validated in ref. [Kru06]
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a) b)

Figure 7.5: a) LC resonator response with varying Si relative permittivity, ϵr. Range of values
is typically found in the literature. The actual value used in this work is ϵr = 11.45 [Kru06].
b) Effect of Si loss tangent, tan δ, on the quality factor of LC resonators.

which was also the low-temperature value confirmed by the manufacturer‡. ϵr
is very important, since different values of ϵr are found throughout the litera-
ture [Bru15; Göp08; Sat22; Web11], leading to a difference in the obtained λ of
up to 100%. As seen in Fig. 7.5a), the value of a resonance changes noticeably
for values of ϵr, where apart from ϵr = 11.45, other values found in the literature
are shown, 11.90 [Bru15], 11.68 [Web11] 11.6[Göp08], and 11.50 [Sat22].

The silicon loss tangent, tan δ, is another important parameter to determine,
which acquires a huge relevance when dealing with dielectric noise in qubits.
However, in our study this value has no importance since it does not change the
resonance of the device, just affecting its quality factor, as shown in Fig. 7.5b).

7.3.2.2 Determination of Lg and C

Sonnet simulations return the scattering matrix, with the focus of this work
placed on S21. The resonance frequency can be obtained by fitting a Lorentzian
to the absolute value of the transmission. However, the specific value of each
resonator Lg and C is not provided.

To separately determined Lg and C, the technique developed in [Doy08] is
followed. It consists of adding a manual known sheet inductance (Ls) to the
metallic layers, and repeating the simulation. This new resonance will only differ
with the previous one by this inductance increase, f ′sim = [(Lg +Ls)C]

−1/2 (see
Fig. 7.6a)). Therefore, there are two expressions with two unknown variables,
Lg and C, which allow to calculate them. Sonnet can also return the current
and charge distribution of the system, which is shown in Fig. 7.6b). There, it
can be seen that most of the current is located in the meander, thus validating
the lumped approximation of separate inductance and capacitance. However, an
extra correction is performed for the accurate determination of the resonance,

‡https://www.topsil.com/
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b)a)

fsimf’sim
Ls

Figure 7.6: a) Basic MR Sonnet simulation (right) and simulation with an added sheet induc-
tance, Ls. Both simulations, with known Ls allow for separate determination of Lg and C.
b) Simulated current distribution of an LC resonator. The inset shows the current in the last
capacitor fingers, where it is minimal.

a) b)

Figure 7.7: a) Sonnet picture of a simulated resonator. Only last three fingers (of M resonators)
are changed to modify the resonator frequency. The finger lengths range from 4 µm to 120 µm.
b) Simulated resonator frequencies by modifying the spacing in the last fingers of the resonator.
Resonances are separated ∝ 30− 50 MHz, enough to be distinguishable in the experiment.

as the effective length of the resonator is enhanced by a 2% obtained with this
current simulations.

7.3.2.3 Frequency of the resonators

The desired simulated resonator frequency is around 7− 8 GHz. The main lim-
itation in the frequency is coming from the experimental setup (see Chapter 3),
where some components only work in between 4 and 8 GHz, such as the circu-
lators or the HEMT amplifiers. Thus, staying in the upper regime is desired,
since the addition of kinetic inductance in real devices will lower the frequency,
specially for the thinner devices.

The number of fingers in the capacitor with 4 µm width and spacing is
then modified to fit this range, resulting in a total number of 18 fingers, for a
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Table 7.1: Results of the MR simulations, for each last finger length, l. The frequency, quality
factor, inductance, capacitance are obtained using the method developed in [Doy08].

l (µm) f (GHz) Q L (nH) C (fF)

4 7.10295 1.26 · 104 1.99 252
16 7.15416 1.25 · 104 1.99 248
28 7.20475 1.25 · 104 1.99 245
40 7.25721 1.25 · 104 1.99 242
52 7.30996 1.25 · 104 1.99 238
64 7.36121 1.25 · 104 1.99 235
76 7.41668 1.24 · 104 1.99 232
88 7.46971 1.24 · 104 1.99 229
100 7.52376 1.25 · 104 1.99 225
124 7.60859 1.25 · 104 1.99 221

simulated frequency of 7.1 GHz. However, in order to have better results, several
different resonators are intended to be placed in a single chip, thus allowing to
average the results to correct for individual device imperfections. Since the
result target is Lk, the goal is to achieve different frequencies, while leaving Lk

unaltered, thus changing only the capacitance.
Simulations of the current as seen in Fig. 7.6b) show that the least amount

of current is placed in the last fingers, which makes these fingers suitable for
modifying the frequency. By changing just the length of the last three fingers,
the frequency can be increased until fsim ≈ 7.6 GHz, as shown in Fig. 7.7. This
way, 10 resonators can be placed in the same chip with ≈ 50 MHz separation
between them. A table with the results for the MR resonators is shown in
Table 7.1

7.3.2.4 Thickness effects

So far, all Sonnet simulations have been performed considering the metal as
a zero-thickness layer. Sonnet is actually a 2.5D software in the sense that it
allows the implementation of thick layers as long as there is no patterning in
the vertical dimension. However, Sonnet thick metals do not allow the addition
of the extra Ls needed for Lg and C extraction, as explained in Section 7.3.2.2.

Nevertheless, the software allows for a manual implementation of the thick-
ness§ This method consists of placing an extra metallic layer on top of the
original aluminum layer with the exact same pattern, and then electrically con-
necting both layers with vias along all the edges, as depicted in Fig. 7.8. The
dielectric layer between them, modelled as air, has the desired metal thickness,
d.

The addition of this thickness increases the resonance frequency by a 1−2%,
which can lead to a 100% deviation in the final λ. The results are shown in

§This method was indeed suggested by Sonnet software support, which resembles the
default thick metal method by Sonnet.
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a) b)

Figure 7.8: a) Zoom of the simulation design with the through vias used represented as white
triangles in the fingers (upper wires) and meanders (bottom turning wires) to connect the two
layers of metal used to emulate thickness. b) Sonnet layers for simulations with thickness,
where two metallic layers are placed to simulate the film thickness.

Fig. 7.9a), where the frequency increases with thickness. In order to accurately
determine the resonance frequency, this simulation will be repeated for the ac-
tual device measured thicknesses if they differ from the nominal ones. The
results for the real thickness simulation for the MR resonators are shown in
Table 7.2.

The same method as in Section 7.3.2.2 is used to determine Lg and C.
In Fig. 7.9b), one can see that the relative change between the thick and 2D
simulations in Lg and C. It can be seen that Lg decreases at a higher rate that
the capacitance increase, thus leading to a decrease in the frequency.

These simulations take a couple of hours, so they have not been performed
for all the resonators with different last finger length. Instead, a simulation
for both the longest and shortest fingers and both have been compared. Since
the resulting relative changes in Lg and C where less than 0.1%, the average
between both relative changes is taken and used to convert 2D simulations into
thick ones. The values depicted in Fig. 7.9b) correspond to this averaged results.
In Table 7.2 the case for the lowest frequency MR resonator is shown.

7.4 Device Design and Fabrication

Most of the design decision were performed iteratively with the results of the
simulations performed in the previous sections. In this section, we describe the
final device and chip designs of the different chips used in this experiment.

7.4.1 Resonator designs

As already commented in Section 7.3.1, three different resonator designs have
been considered: small resonators (SR), medium resonators (MR), and large
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Figure 7.9: a) Sonnet simulations for resonator transmission. Grey curve represents the
default response with no thickness. Yellow and increasing saturation color curves correspond
to thicknesses ranging from 25 nm to 200 nm. b) Ratio of simulated L and C with and without
thickness. L is reduced more rapidly than the increase on C. Points are on the real thickness
MR devices.

Table 7.2: Simulated MR resonator with last finger length 4 µm for zero-thickness and for
real measured thicknesses. d represents the thickness, and L and C ratios are compared to
the zero-thickness simulation.

# d (nm) f (GHz) L (nH) C (fF) L ratio C ratio

0 7.10295 1.994 251.8 1 1
27.9 7.11846 1.972 253.5 0.989 1.007
52 7.13588 1.952 254.9 0.979 1.012
73.1 7.15092 1.934 256.1 0.970 1.017
104.5 7.17278 1.91 257.8 0.958 1.024
187.6 7.22861 1.85 262 0.927 1.040
207 7.24124 1.837 262.9 0.921 1.044

resonators (LR). They differ in the size of their meander and finger structure.
An image of the different devices design is shown in Fig. 7.10a-d).

The main dimensions of the SR, MR, and LR devices are 2, 4 and 6 µm in
most of the meander and finger structures. While the number of meanders is
kept constant, the number of fingers is adapted between the three designs so
that the 7− 8 GHz range is achieved. Also, the number of last fingers modified
is also varied depending on the design, since each finger does not add the same
capacitance in each design.

10 different resonators were designed for each resonator type, in order to have
10 different frequencies to add to each individual chip. Distributed resonators
were also designed and measured, but their analysis is out of the scope of this
work, because the extraction of the kinetic inductance require an extra geometric
analysis, that will be left for future works.
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Figure 7.10: LC resonator device design variations: (a) medium (MR); (b) medium with
modified finger capacitor; (c) large (LR), (d) and small (SR). Design of a 4-probe measure-
ment meander with (e) and without (f) surrounding ground plane. (g) Design of a Hall-bar
measurement.
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Figure 7.11: An example of a device design of the first generation of devices. A four-probe
structure is placed on top and ten MR resonators in on the bottom line. There were analogous
designs with SR and LR resonators were also.

7.4.2 Resistance structure designs

The resistance structures are meander-like structures as shown in Fig. 7.10e).
The meander is designed to have a room temperature resistance in the range
100 − 1000 Ω, which falls well within instrument measurement range. The
resistance is expected to drop by an order of magnitude at 4 K.

The meander in Fig. 7.10f) replicates the CPW design with 10 µm width and
6 µm gap, although only DC signal is used, so the ground should play no effect.
An alternative design with no ground plane has also been measured, which is
shown in Fig. 7.12. The first design is abbreviated as 4P-1 (four-probe, first
design), and the second one 4P-2.

Finally, a third design, resembling a Hall bar structure (HB) is also fabricated
and measured, depicted in Fig. 7.10g). In this structure the current flows from
left to right, and the voltage drop is measured in the two pads on the bottom,
leaving the pads on top unused.

7.4.3 Chip designs

The first generation of chips were designed so that each device had a series of
resonators of the same type and a four-probe structure, as it is seen in Fig. 7.11.
Four different devices were designed, with either MR, SR, LR or distributed
resonators on it and the four-probe structure 4P-1. 10 different resonator designs
were patterned to have good statistics of the measured Lk.

7.4.4 Studied thicknesses

The thicknesses d chosen for the study range from 25 nm to 200 nm. This range
includes typical values found for superconducting qubit devices and radiation
detectors (50 nm–100 nm). Including this range is indispensable for calibrating
λ for real-scenario devices. d < 50 nm ∼ λbulk is chosen to observe thin-film
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Figure 7.12: a) Four-probe structure in the second generation of devices were isolated in a
separate device. Out of the several structures, only the meander and the Hall-bar were mea-
sured (see Fig. 7.10). b) Three lines with different resonator types: MR, LR and distributed.
Each line had five resonators unevenly spaced in frequency. A separate chip with only SR
structures was designed but not used.

effects, while d > 100 nm is chosen to explore the regime approaching bulk
aluminum behavior. The actual thicknesses were accurately determined using
Atomic Force Microscopy.

7.4.5 Fabrication
The devices were fabricated using photolitography on high resistivity silicon
wafers from TOPSIL provider. Aluminum was deposited via metal evaporation.
The devices were later diced and wirebonded to a ceramic PCB. The basic
processing steps for patterning the electronic devices are as follows.

Samples are diced in quarter wafers and subsequently cleaned in acetone,
rinsed in isopropanol and blown dry in N2 stream. Substrates are dehydrated
before photoresist deposition. LOR3A plus AZ6512 resists are spin coated and
soft baked sequentially. A Karl Suss mask aligner is used for resist-stack ex-
posure and then a standardized development sequence is applied. The pattern
transfer consists in aluminum thin film deposition followed by a lift off of the
resist in NMP solvent. The aluminum deposition was performed by e-beam
evaporation for the given thicknesses. The remaining LOR3A is removed by
mild oxygen plasma treatment. For electrical characterization, the samples were
diced appropriately and mounted onto ceramic PCBs. Devices were wire-bonded
with aluminum wires to either a sample holder for AC measurements or to chip
carriers for DC measurements. Exemplary images of actual devices are shown
in Fig. 7.13.

Two different evaporators, one Plassys at IFAE and another from Univex
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Figure 7.13: a) Scanning Electron Microscopy (SEM) of a LC resonator. b) SEM of a 4-probe
measurement meander.

Figure 7.14: a) S21 data and fit of measured resonators with 100 nm and 200 nm thickness.
Each minor tick corresponds to 1 MHz b) Resistance measurements at room temperature
(RT), 4 K and 10 mK.

at CNM, were used in this study in order to account for possible fabrication
dependencies on λ. While the IFAE evaporator is only used for aluminum, the
CNM evaporator contains other metals and may thus lead to a higher amount
of impurities.

Altogether, the different variety of designs and fabrication conditions account
for potential systematic errors on λ, ensuring a more comprehensive analysis.

7.5 Experiment

All devices were mounted in a sample holder at the mixing chamber plate of
a dilution refrigerator (T = 20 mK) and subjected to measurements using a
Vector Network Analyzer (VNA) at power levels near the single photon regime.
Full setup schematics can be found in Chapter 3. 4-probe structures were either
located in the same chip as the resonators or in a separate chip, in which case
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Table 7.3: Table with results of the fits from Fig. 7.15. All parameters are used in Eq. (7.9)
to fit the resonator response. Parameter uncertainties are obtained using iminuit, as detailed
in the main text.

fr |Qc| Ql ϕ α a τ
GHz ×103 ×103 ×10−3 nHz

7.0056(10−6) 15.2(0.3) 9.2(2) 0.22(0.01) −3.78(0.04) 1.01(0.01) 69.7(0.1)
7.0115(10−6) 3.47(0.01) 4.20(0.01) −0.76(0.01) −2.87(0.01) 8.17(0.01) 69.9(0.1)

they were located either at the mixing chamber or at the still plate of the dilution
fridge, and measured with a sourcemeter.

7.5.1 Resistance measurements

Resistance measurements were performed at room temperature and at 4 K [see
Fig. 7.14a)] and then the trace was fit to a linear regression. Then, a contin-
uous measurement was run at a low current while sweeping the temperature
around TC,bulk ∼ 1.2 K to find the critical temperature of the sample. TC was
determined at the midpoint where the resistance dropped by 50%.

7.5.2 Resonator measurements

A typical resonator measurement is shown in Fig. 7.14b) for two different res-
onator thicknesses.

The resonator response was fit to the following expression [Pro15]

S21 = aeiαe−2πifτ

[
1− (Ql/|Qc|)eiϕ

1 + 2iQl(f/fr − 1)

]
, (7.9)

where the factor between brackets is the actual resonator response, while the
pre-factor in front contains the response of the rest of the circuit. a is an
attenuation constant, α represents a phase shift and τ is the electrical delay of
the measurement line. Ql is the loaded quality factor related to the complex
coupling quality factor Qc and internal quality factor Qi, through Q−1

l = Q−1
i +

Re(Q−1
c ). Finally, ϕ expresses the impedance mismatch, and fr is the resonator

frequency. Typical fits to the resonator response are shown in Fig. 7.15, where
one can see that the impedance mismatch is correctly captured.

7.5.2.1 Resonator fitting routine

Our fitting process follows from a routine inspired by ref. [Pro15]. In that
study, the data fitting is performed sequentially, until the full expression for S21

is obtained. However, with such a sequential process it is hard to propagate
errors in the fitting, and correlations between parameters are lost. For that
reason, we use the sequential procedure to yield our initial parameter guess.
Standard SciPy optimization routines are employed for this method.
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a)

b)

Figure 7.15: S21 resonator response in magnitude (|S21|, left) and phase (φ, right). The fit
using our procedure is superimposed to the light blue data points as a dark blue dashed line.
a) 100 nm MR resonator. b) 200 nm MR resonator, with the same design as the device in a).

Once a good initial set of parameters is obtained, we use the iminuit library
[Dem20] for fitting the full S21 expression. Iminuit is a library mainly used in
the particle physics community, with a focus on error propagation and accurate
uncertainty estimation. The S21 fit has seven parameters, which makes it a
complex fit, and proper error estimation becomes relevant.

In most fits performed in this work, the initial guess provided by the sequen-
tial method and final fitting parameters were close. In general, having good
initial parameters for iminuit is indispensable.

Table 7.3 shows fitted parameters from resonators in Figure 7.15, with the
corresponding errors. The error in frequency δfr is of order 10−6, which is the
most important parameter to extract λ. The resonator internal quality factor
Qi is not used in this study. In fact, the resonators in this work are designed
with Ql ≪ Qi to maximize the signal strength, and therefore Qi is not very
accurately determined, lying in the range 50.000-100.000 showing no obvious
thickness dependence.

Using iminuit one has access to the correlation matrix between variables,
which is defined as

ρij =
σij√
σiiσjj

. (7.10)

Here, σii is the variance of variable i, and σij is the covariance between variables
i and j, if i ̸= j.
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Table 7.4: Table with correlation for fitting of resonator on Fig. 7.15a). Parameters can be
seen in 7.9.

a α τ Ql |Qc| ϕ fr
a 1 0 0 -0.3 -0.3 -0.1 0.1
α 0 1 1 0 0 -0 0
τ 0 1 1 0 0 -0 0
Ql -0.3 0 0 1 0.8 0 -0
|Qc| -0.3 0 0 0.8 1 0 0
ϕ -0.1 0 0 0 0 1 -0.7
fr 0.1 0 0 -0 0 -0.7 1

When using the fitting formula for the transmission measurements S21 Eq. (7.9),
both quality factors, QL and |Qc|, show high correlation and, indeed, QL is
bounded by Qc. Other variables that are highly correlated are α with τ , and fr
with ϕ0. In both cases, a slight change in one of them, provokes adaptations in
the other coupled variable to minimize the cost function, which indicates corre-
lation. One could, in principle, parameterize the model in an alternative way to
Eq. (7.9) to use purely independent variables. However, this parameterization
will probably require the use of variables with little physical meaning, thus los-
ing the benefits and information obtained from fitting the variables with actual
physical meaning. In Table 7.4, correlations between parameters are shown for
resonator in Fig. 7.15a).

7.5.2.2 Temperature and magnetic field measurements

The resonator measurements have been performed at different temperatures
in order to follow the resonance change with temperature, which is known to
depend on the superconducting type[Tin04]. London penetration depth temper-
ature dependence is known to be λL(T ) ∝ (1− T/TC)

−1/2. This dependence
is also valid for local superconductors. However, for nonlocal superconductors,
λ ∝ (1− T/TC)

−1/3, by using Eq. (7.2). In general, the exponent δ is expected
to be between these two limits.

To perform these measurements, the temperature of the fridge was monitored
and changed while letting the system to slowly thermalize. Then, resonator
measurements as described previously were changed. The

Moreover, some measurements with external magnetic field were performed
in order to observe any sizeable difference in the quality factor. For that, an
external coil was placed on top of the resonator sample box, and different mag-
netic fields were applied. In between each different B⃗, the sample was heated
above TC to break superconductivity and then brought back to ∼ 20 mK with
the new magnetic field.
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Figure 7.16: Measured penetration depth λ as function of device thickness d. Two mea-
surement methods are shown: resistance measurements (red triangles) and LC resonator
resonances (blue circles). Bulk penetration depth is shown as a lower limit. The thickness of
samples is measured using atomic force microscopy. The fitting curve assumes the electron
mean-free path to be proportional to the sample thickness, following from Eq. (7.3), Eq. (7.4).

7.6 Results

The obtained values of λ for each sample thickness d from both resonator and
resistance measurements are plotted in Fig. 7.16. Each point of the resonator
measurement consists of an average of several resonators on the same chip with
varying capacitance and kinetic inductance ratio (see Table 7.5), as explained
in Section 7.3. The vertical error bars correspond to the standard error of the
mean, which is smaller than the marker size. The error in the horizontal axis
corresponds to the uncertainty in AFM measurements to determine the actual
film thickness. The resistance measurements consist of a single structure in each
device, given the small error in the fitting of the resistance [Fig. 7.14].

Table 7.5 shows the full experimental results obtained for both the resonance
and resistance measurements. A total of 70 structures have been analyzed, com-
bining the two measurement methods (see Section 7.2), three different designs
for each measurement method, along with eight different thicknesses and two
evaporation facilities. This combination reduces considerably the possibility of
a systematic error on the experiment, and provides a good statistical ensemble
from which to extract conclusive values of λ.

The data in Fig. 7.16 exhibit a consistent trend, with λ increasing rapidly
for d < 100 nm and approaching bulk values for d ∼ 200 nm, validating the
chosen thickness range. For very low thicknesses, it is common to assume that
the electron mean-free path l is limited by surface scattering, leading to l =
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Table 7.5: Results for both resistance and resonance frequency measurements. dnom is the
nominal target thickness, while dmeas is the measured thickness using atomic force microscopy.
λ is the measured average penetration depth. Measurement type is "LC" for lumped resonators
and "R" for 4-probe resistance measurements. “N" represents the number of devices measured
for each particular thickness, which include small resonators (SR), medium resonators (MR),
and large resonators (LR) for the resonance frequency measurements, and four-probe (4P)
and Hall bar (HB) for the resistance measurements. The mask number is also specified,
together with the fabrication facility. For resonator measurements, λthin is shown, together
with surface kinetic inductance Lk,s. For resistance measurements, residual-resistance ratio,
defined as RRR = RRT/R4K and TC are shown.

# dnom dmeas λ Meas. Design N Mask Fab. λthin Lk,s

nm nm nm nm fH
1 25 28(4) 163.3(0.5) LC MR 9 1 IFAE 965(4) 1212(5)
3 50 52(2) 118.3(0.3) LC MR 9 1 IFAE 286(1) 359(2)
4 75 73(2) 94.3(0.6) LC MR 5 2 IFAE 145(2) 182(3)
6 75 78(3) 97.2(0.9) LC LR 9 1 IFAE 145(2) 182(3)
8 100 105(2) 76.2(0.9) LC MR 5 2 IFAE 87(2) 109(3)
9 100 105(2) 62.6(0.2) LC LR 5 2 IFAE 67(2) 84(3)
12 100 127(5) 63.3(1.1) LC SR 9 1 CNM 66(1) 83(2)
14 200 188(3) 58.1(1.1) LC MR 5 2 IFAE 58(1) 73(2)
16 200 207(5) 58.8(1.0) LC MR 6 1 CNM 59(1) 74(2)
# dnom dmeas λ Meas. Design N Mask Fab. RRR TC

nm nm nm K
2 25 28(4) 162.9(1.2) R 4P 1 1 IFAE 2.1(0.1) 1.32(0.03)
5 75 76(3) 84.1(0.7) R 4P 1 2 CNM 6.1(0.1) 1.22(0.01)
7 100 97(3) 80.6(0.7) R 4P 1 1 CNM 6.1(0.1) 1.27(0.02)
10 100 105(2) 69.4(0.6) R 4P 1 2 IFAE 7.2(0.1) -
11 100 105(2) 69.4(0.6) R HB 1 2 IFAE 7.2(0.1) .
13 100 127(5) 68.7(0.6) R 4P 1 1 CNM 7.4(0.1) 1.20(0.05)
15 200 188(3) 55.3(0.5) R 4P 1 2 IFAE 11.6(0.1) 1.20(0.02)
17 200 207(5) 53.6(0.4) R 4P 1 1 CNM 9.9(0.1) 1.20(0.05)

d [Tin04]. With this assumption, λ can be fitted to c7.4 leaving a as a fitting
parameter. The fit yields a = 1.26 ± 0.03, which lies in a regime of mixed
scattering. It is important to note that Eq. (7.4) is only valid in the regime of
a type-II superconductor, as the limit for large l is λL, and not λbulk. Using
the fitted curve, λ = λbulk at d ≃ 250 nm, which sets this thickness as an upper
limit to the validity of the expression.

7.6.1 Kinetic inductance results

The resonance frequency method gives access to Lk through Equation (7.8),
which is then converted to Lk,s via Equation (7.1). Lk,s is proportional to
λthin, and both are shown in Figure 7.17. In this figure, only LC resonators
are plotted, and the exponential increase at low thicknesses is more pronounced
than the increase of λ in Figure 7.16, as expected.
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Figure 7.17: LC resonator response, plotted in two scales: λthin (left y-axis) and Lk (right
y-axis), which are proportional, see Eq. (7.6).

Large Lk,s values near ∼ 10 pH are predicted for aluminum with d = 10 nm.
Combined with a long enough meander, pure aluminum can attain Lk values
comparable to those exhibited by superinductors [Mal18]. For example a thin
wire of 2 µm with length of 200 µm would already provide an inductance of
1 nH, that could be increased by increasing the length of the wire.

7.6.2 Design variations

Figure 7.18 show variations on the design and deposition system for both res-
onance and resistance measurements, respectively. In Fig. 7.18a), λ from the
three different resonator designs are shown. The devices fabricated at the differ-
ent fabrication facilities do follow the overall trend, considering the differences
in the two deposition systems. The noticeable difference at d = 100 nm may
arise from a systematic difference in the device geometry between M and L
resonators not accounted for.

Resistance measurements are displayed in Figure 7.18b). All values follow
a consistent trend λ ∼ 1/

√
d. Most data are obtained from 4-probe structures

with (4P-1) and without (4P-2) surrounding ground plane. The single Hall bar
value is consistent with a 4-probe measurement. Devices fabricated at different
fabrication facilities did not show visible deviations in λ despite the difference
in the residual resistance ratio RRR values (Table 7.5).

7.6.3 Critical thickness

The results obtained in this work allow us to provide estimates of the criti-
cal thickness dc where aluminum turns from a type-I to a type-II supercon-
ductor. Such a transition is expected to occur for a value of κ = 1/

√
2 in
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CNM CNM

a) b)

Figure 7.18: a) Measured λ by the resonance frequency method for different thicknesses. Dif-
ferent resonator types are shown. The devices fabricated in CNM evaporator are highlighted.
b) Measured λ using the resistance method for different thicknesses. Different resistance struc-
tures are shown, the two types of four-probe, with (1) and without (2) ground plane, and the
Hall bar. The devices fabricated in CNM evaporator are highlighted.

Eq. (7.5) [Abr57].

In Fig. 7.19, the values of λ obtained are compared to values of ξ obtained
from two different assumptions on the dependence of the electron mean-free
path l as function of thickness d. Our first method assumes l = d, which is a
reasonable approximation for thin films as already argued, leading to a value ξ′

estimated from Eq. (7.3). The thickness that satisfies ξ =
√
2λ is d(1)c ≃ 113 nm.

It is important to note that this fit, which assumes a linear dependence between
d and l, fails for large d.

An alternative method to predict ξ is obtained by using the relation[Bra71;
Rom82] ρ · l = 4 ·10−12 Ω · cm2 known for aluminum. According to this relation,
a different ξ” is obtained through Eq. (7.3) and the ρ values obtained from the
meanders, leading to d(2)c ≃ 155 nm. In either case, an exact description of l as
function of d is outside of the scope of this work. Therefore, our assumptions
allow us to define a region of critical thicknesses dc = 113 nm−155 nm where the
transition between superconductivity types may occur. As argued in Section 7.1,
the actual transition between superconductivity types may take place over a
certain range of values of dc, given the intrinsic inhomogeneity of κ due to the
disordered nature of thin films.

In summary, our results suggest that the thicker samples (d > 150 nm) may
enter the regime towards type-I superconductivity [Bra71], unlike the thinner
ones (d < 50 nm) which are more likely to behave as type-II local superconduc-
tors.
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Figure 7.19: Estimated dependence of coherence length ξ on thickness using the fit from
Fig. 7.16. ξ′ is calculated assuming l = d with Eq. (7.3). According to this fit, the transition
between superconductivity regimes, when ξ/λ =

√
2 [Abr57], occurs at a critical thickness

dc ≃ 113 nm. ξ” is calculated from l obtained from the relation ρ · l = 8 · 10−12 Ω · cm2. The
blue region is the predicted zone where dc could fall according to these two methods.

7.6.4 Temperature dependence

Fig. 7.20 shows the temperature dependence of λ of a 200-nm thick MR res-
onator. These measurements, performed for several resonators, show how the
penetration depths increases with the temperature. The cause of this change
is the decrease in superconducting carrier density, ns, causing an increase in λ,
which follows [Tin04]

λ(T ) = λ(0) (1− T/TC)
−δ

, (7.11)

where δ is the relevant exponent which determines the superconductivity type,
which is 1/2 for local and 1/3 for nonlocal superconductors. However, the
best fit corresponds to δ = 0.045, far from the predicted exponents. Moreover,
the temperature dependence is not correctly fitted by Eq. (7.11). This can be
caused by an incorrect determination of the temperature or that the model used
to determine the temperature dependence is not correct.

Further work is needed to understand the results. Few samples have been
studied, so more experiment should enable to understand if this behavior has
any relation with thickness. Then, alternative determination of the temperature
of the sample should be performed, as it could be that the effective temperature
differs from the nominal one, as when computing qubit thermal population.
Finally, more complex functionalities can be studied.
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Figure 7.20: λ(t) for a 200-nm thick MR resonator as a function of temperature. Data is plot-
ted as circles and the best fit of Eq. (7.11) (δ = 0.045) in dashed line. The expected exponents
are δ = 1/2 and δ = 1/3 for local (dashed-dotted) and nonlocal (dotted) respectively. Results
show high deviation between expected behavior and measured data.

7.6.5 Measurements with external magnetic field

An external coil was added to the setup to analyze the resonator response un-
der an applied magnetic field. It was expected to observe a distinct behavior
depending on the type of superconductor, since type-II superconductor should
allow vortices to nucleate in the film. The main result of the added vortices was
supposed to be a reduction in the quality factor caused by extra noise. However,
as seen in a representative picture in Fig. 7.21, Qi is mostly unaffected by the
increase in current in the four resonators considered.

The main cause of Qi not being modified by the current on the coil could be
the imprecision in the determination of Qi whose uncertainty may be larger than
the effect of the vortices. Moreover, the experiment was not specifically designed
for these measurements. A higher Qi/QL should allow for a precise fitting of Qi.
Replicating the measurements presented [Nsa14], where a resonator is designed
to trap flux in specific locations for different thicknesses, would be a suitable
experiment.

7.7 Discussion

This study brings forward the relevance of including thickness effects in LC
resonator desings where inductance plays an important role. For thinner films
d ∼ 50 nm, as those typically used in cQED, Lk is almost an order of magnitude
higher than what would be expected from bulk aluminum.

Geometric inductance is also modified with thickness, as seen from Sonnet
simulations. Lg follows the same trend and Lk, decreasing for thickest samples.
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Figure 7.21: Qi of four different MR resonators for different external current applied on the
coil.

Depending on the specifics of the sample, a 2D simulation which gives a higher
Lg than real could potentially compensate for not considering Lk into the sim-
ulation. However, this cannot be assumed, and accurate predictions require the
exact determination from both Lg and Lk. Geometric inductance also depends
strongly on the other dimensions of the device, which makes this analysis more
important.

The results in this study are obtained from a diversity of samples, with the
goal of capturing the overall trend of λ vs d without systematic deviations.
However, the remaining deviations observed when combining all values of λ
obtained in Fig. 7.16 may derive from variability in the fabrication process, as
the complete set of devices was fabricated in a period of over a year, or variations
of Lk not accounted for in the different resonator types.

The designs in this study were not optimized to characterize the resonator
internal quality factors Qi with precision. The Qi values observed varied in the
range 103 − 105 and showed no clear dependence on d. We attribute this fact
both to fabrication and measurement uncertainties and to the inaccuracy of the
fitting procedure, as many devices had Qc ≪ Qi, which led to high uncertainty
in the determination of Qi.

A targeted design to accurately determine Qi could provide information on
which role plays d on the system losses. Thicker samples could have no vortices,
which, along with its reduced inductance, would reduce the flux-noise sensitivity.
On the other hand, thicker samples have a larger surface, which can hold more
microscopic defects and, thus, more noise. It is uncertain which mechanism
would have a stronger effect.



196 CHAPTER 7. MAGNETIC PENETRATION DEPTH OF ALUMINUM

The measured thickness range includes the expected crossover from a type-I
to a type-II superconductor, as seen in Fig. 7.19. However, in order to properly
identify the exact location, magnetic field measurements should be performed,
which could show vortex trapping only in thinner samples. This would clearly
identify the superconductivity type of the samples. Similar experiments have
been already performed in Nb [Gub05].

The temperature dependence of the resonances and internal quality fac-
tors is another important source of information. Qi and λ behave differently
for local and non-local superconductors as temperature increase, which could
provide an alternative differentiation of superconducting types. However, using
T -dependence to discriminate between type-I and type-II superconductors poses
additional challenges. Thicker samples would transition from non-local to local
superconductivity at some temperature as λ increases with temperature, which
could lead to a complex temperature dependence of the samples. Near Tc, all
superconductors are local.

Thickness, in general, is a widely unexplored variable in superconducting
qubit design, except for gap dependence on the Josephson Junction leads [Li22].
d is usually chosen because of fabrication constraints and reproducibility, and
Lk is either disregarded or approximated from test structures of the same thick-
ness. Using different thicknesses opens the path to both using thin aluminum
as superinductor, and thicker aluminum for vortex-free materials which are less
sensitive to flux noise. Another alternative to completely expel vortices is to
use wires narrower than a critical width, which is known for Nb [Sta04], but
not for Al. Thicker aluminum could, then, substitute ground planes with holes.
Combining both thicknesses, thinner aluminum could capture vortices, serving
as quasiparticle traps [Pan22] in more complex designs.

7.8 Conclusions and outlook

In summary, a characterization of the aluminum penetration depth λ was con-
ducted for thicknesses in the range 25− 200 nm, providing values ranging from
160 nm down to 54 nm, approaching the aluminum bulk value. Our measure-
ments of λ vs thickness represent a guide to circuit designs where inductance
plays a significant role, such as e.g. circuit QED and kinetic inductance detec-
tors.

We have also introduced an accurate fitting procedure for resonators which
can easily be extended to other experimental settings. For simultaneous param-
eter fits, sequential fitting can be a good process to obtain each parameter at
a time. However, this process does not provide a good estimation of the fitting
error and the correlations between parameters. Using the result of sequential
fitting as the initial guess, we then fitted with the iminuit package, providing
an accurate error estimation and, in particular instances, a better parameter
prediction.

Our work has also enabled us to provide an estimation of the thickness
range at which thin-film aluminum starts behaving as a type-II superconductor.
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Further work is needed to explore the actual transition point and investigate
potential new circuit functionalities in thicker aluminum films.

In future works, an accurate determination of this transition point will be
targeted with experiments designed for trapping single flux quanta. Improve-
ments in the design and setup to properly determine Qi will be needed for
these experiments. Moreover, a thorough analysis of the temperature variation
of λ is to be performed to validate the current existing models, and to obtain
alternative information on the type of superconductivity.
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Chapter 8

Kerr-reversed TWPA
David López-Núñez, Imran Mahboob

In this chapter the redesign of a Kerr-reversed Travelling-Wave Quantum-Limited
Amplifier (TWPA) is presented. This amplifier[Ran21] was designed by Arpit
Ranadive in Dr. Nicolas Roch group in the Néel Institute-CNRS (Grenoble),
whose fabrication I briefly followed during a short stay in their group.

Section 8.1 introduces the concept of quantum-limited amplification and
exposes the main goals in the designed amplifier. In Section 8.2, the TWPA
amplification mechanism is introduced, along with the specific description of
the Kerr-reversed TWPA (KrTWPA) used in the work.

The theoretical design is presented in Section 8.3. There, the amplification
gain profiles are obtained for the different circuit parameter combinations, repro-
ducing some features of the original KrTWPA. Following with this theoretical
design, the physical design is then optimized to target the goals in Section 8.4.
This section exposes all the simulations and design performed, with the final
chosen design. Finally, in Section 8.5, the final remarks and the future work
plans are commented.

This work was performed at NTT Basic Research Labs in Atsugi, Japan,
with Dr. Imran Mahboob, in Dr. Shiro Saito’s group, during my 2-month stay.

8.1 Quantum Amplification

A quantum-limited amplifier is one of the most important elements in a quantum
computing experiment, as it was already introduced in Section 2.6.3. Quantum
amplifiers excel at the noise figures, typically achieving noise levels close to the
quantum limit of noise of 1/2 photon. The noise temperature, as previously
stated in Section 2.6.3, is defined as TN = N/(kB), with N the noise power and
kB the Boltzmann constant.

An amplifier is usually characterized by its gain, G. Gain is defined as the
increase in signal power, Aout =

√
GAin, where Ain and Aout are the incoming

199
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Figure 8.1: Schematic representation of an amplification chain with several amplifiers in series,
each with its noise power, Ni, noise temperature, Ti, and gain, Gi.

and outcoming signal amplitudes.
In order to understand the importance of a quantum-limited amplifier, a

typical amplification chain is shown in Fig. 8.1. The added noise from the first
amplifier is N1 and the effective noise temperature of the amplification is T1.
However, the second amplifier noise, N2, will only affect the noise temperature
minimally as Tcas,2 = T1 +

T2

G1
, where Tcas,2 is the cascaded noise temperature

after the second amplifier. The cascaded noise temperature after M amplifiers
is

Tcas,M =

M∑

i=2

T1 +
Ti∏i−1

j=1Gj

. (8.1)

The first amplifier of the chain is thus the most important, since the noise from
the subsequent amplifiers is reduced by the gain of the first one. In this scenario,
a quantum-limited amplifier at the beginning of the chain allows for the best
readout efficiency.

8.1.1 Benchmarking a quantum-limited amplifier

Real quantum-limited amplifiers do not reach the half a photon limit of noise,
but stay slightly above due to imperfect design or uncontrolled noise mech-
anisms. The added noise over this 1/2, Nadd, is one of the most important
benchmarks of these amplifiers.

However, the quantum-limited added noise is not the only important factor
in the amplification. In the design of the quantum-limited amplifiers in the
following section, these are the main goals:

• Large gain. Typically, 20 dB is the target gain of these amplifiers. The
main purpose of this gain is to reduce the noise of the subsequent ampli-
fication stages, which usually provide a larger gain, usually around 40 dB
for HEMT amplifiers.

• Large bandwidth. In quantum computing experiments, multiplexed read-
out is a common practice, which implies measuring several resonators si-
multaneously. Original quantum-limited amplifiers, such as Josephson
Parametric Amplifiers (JPA)[Yam08; Cas08], rely on resonant amplifica-
tion, where signal and pump interact in a non-linear resonator. How-
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ever, these amplifiers, although some are frequency-tunable, have a lim-
ited bandwidth at their resonance frequency. Travelling-wave parametric
amplifiers (TWPA) overcome this limitation by increasing the interaction
time between the pump and signal while travelling through a non-linear
medium. TWPAs can achieve much larger bandwidths thanks to avoiding
the resonance bandwidth limitation.

• Easy to fabricate. Some TWPA devices require very precise tuning of
junction parameters or the use of non-planar structures. By reducing
fabrication complexity, devices are more reproducible and faster to manu-
facture. Moreover, some techniques may not be possible to implement in
the available fabrication facilities.

• Compact. Some TWPAs require external coils, which make them more
complicated to operate, and introduce a much larger amplification foot-
print. A compact device will make operation more reliable, and will make
better use of the limited space in a refrigerator.

The reader is referred to [Esp21] for more amplification benchmarks, such
as the 1 dB compression point, directionality, etc.̇

In the Kerr-reversed TWPA introduced in the following section, the first
two target goals, large gain and large bandwidth, were already fulfilled by the
design presented in [Ran21]. Thus, the main goals of this project is to modify the
physical design so that the fabrication is considerably simpler and the TWPA
magnetic flux is generated on-chip instead of with an external coil.

8.2 Kerr-reversed TWPA
TWPAs have inherent large bandwidth, so they outperform resonant quantum
amplifiers for frequency multiplexing. However, TWPAs typically have to over-
come two difficulties that do not usually play an important role in resonant
amplification: phase and impedance mismatch.

In TWPAs, the signal travels through a non-linear medium simultaneously
with the pump drive. The interaction time between both waves is increased by
having a long non-linear medium. However, if the phases of the signals are not
matched, the gain can be dramatically reduced.

The impedance mismatch, on the other hand, is not a feature by the TWPA
itself, but depends on its relation with the environment. The microwave en-
vironment used in superconducting circuit experiments consist of equipment,
components and cabling working typically at 50 Ω impedance. Therefore, the
amplifier needs to be impedance-matched to 50 Ω, else it will reflect a consid-
erable portion of the already weak incoming signal.

In this section, the mathematics behind TWPA amplification will be devel-
oped, and two strategies to overcome the phase mismatch will be explained,
focusing on the Kerr reversal technique. Impedance matching will be assumed
throughout this section. Section 8.3 will target the device theoretical design,
while the physical configuration of the device will be presented in Section 8.4.
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Figure 8.2: Example unit cell of a TWPA, consisting on a Josephson Junction in parallel to
a capacitance to ground.

8.2.1 Mathematical Development of Amplification in TW-
PAs

The non-linearity of the medium where the signals travel is indispensable so that
an energy-transferring interaction occurs between both signal and pump waves.
The strong pump alters the electromagnetic environment in the material, which
then acts over the signal, increasing its power. The functional behavior of a
TWPA is analogous to any parametric amplification process, such as a kid in a
swing, where the energy deposited in changing the center mass results in larger
kid oscillations.

Two main strategies are found in the literature to obtain the non-linear
medium. One uses the non-linearity of large kinetic inductance materials, such
as disordered superconductors[Eom12]. The other is based on Josephson Junc-
tions[Mac15; Pla19; Ran21], the same nonlinear element of superconducting
qubits. The Josephson junction-based TWPAs are composed of many individ-
ual cells repeated along the circuit. In each cell, a small part of the amplification
takes place, and the sum of hundreds of cells provides a large gain.

An example of how to compute the gain of a single cell is shown for a cell
consisting of a Josephson junction and a capacitance to ground in series with
the rest of the cells, as seen in Fig. 8.2. Applying circuit quantization to this
cell n, and relating to incoming (outgoing) flux from cell n − 1 (n + 1), the
mathematical expression for current conservation is

Cg d
2Φn

dt2
=C

d2 (Φn+1 +Φn−1 − 2Φn)

dt2
+

1

LJ
(Φn+1 +Φn−1 − 2Φn)−

1

6I20L
3
J

(
(Φn+1 − Φn)

3 − (Φn − Φn−1)
3
)
,

(8.2)

where Φi is the flux at node i, Cg is the ground capacitance, C is the Josephson
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capacitance, I0 the critical current, and LJ the Josephson inductance.
This cell size is much shorter than the wavelength of the signals travelling

through. Therefore, an approximation to the continuous can be made for the
frequencies used in these experiments, f > 1 GHz, which leaves the expression
as

Cg ∂
2Φ

∂t2
− a2

LJ

∂2Φ

∂x2
− Ca2

∂2Φ

∂x2∂t2
=

a4

2I20L
3
J

∂2Φ

∂x2

(
∂Φ

∂x

)2

(8.3)

where a is the unit cell length, with a≪ λ.
The solution to this type of equations is known from quantum and classical

optics, and consist of three waves: a pump, an idler and a signal wave. The
idler comes naturally from energy conservation. Four-wave mixing amplifica-
tion is considered for this design, where a two-photon process occurs such that
2fp = fs + fi, where fp, fs, and fi are the pump, signal, and idler frequency,
respectively.

The expression of the total wave can be expressed using standard wave equa-
tion solutions

Φ =
1

2

∑

j={p,s,i}

[
Aj(x)e

i(kjx−ωjt) + c.c.
]
, (8.4)

where Aj is the slowly varying amplitude, and kj and ωj the wavevector and
frequency of the wave j, respectively. The pump, signal and idler modes are
defined as p, s, i respectively.

A few approximations are typically made to compute the wave evolution
through the TWPA. As the pump power is much higher than the other waves,
Ap ≫ Ai, As, the pump wave is considered undepleted during the whole medium.
Thus, Ap is constant. Moreover, both As and Ai are considered to vary very
slowly, allowing to disregard spatial derivatives in Eq. (8.3).

After a few mathematical steps,

Ap(x) = Ap0e
iγppx , (8.5)

where Ap0 is the initial pump amplitude and γpp is the self-Kerr modulation.
The self-Kerr is the phase change on Ap caused by the same pump signal trav-
elling through the medium and distorting the electromagnetic environment.

The other two amplitudes are

∂as
∂x

= iγsia
∗
i e

i∆kx,

∂ai
∂x

= iγisa
∗
s e

i∆kx,

(8.6)

where as,i is a renormalized signal/idler amplitude. γsi,is is the signal-idler cross
modulation, which is the phase change applied on the signal(idler) caused by
the electromagnetic distorsion of the idler(signal) travelling through the TWPA.
∆k is the phase mismatch which is defined as

∆k = ∆kl +∆knl , (8.7)
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which is the sum of the linear phase mismatch, ∆kl and the nonlinear phase
mismatch, ∆knl. The former is the difference in signal wavevectors,

∆kl = 2kp − ks − ki . (8.8)

∆knl depends on the self-Kerr, γpp, and the cross-Kerr terms, γip and γsp,
which, again, are caused by the interactions between the signals mediated by
the nonlinear medium. ∆knl is defined as

∆knl = 2γpp − γsp − γip . (8.9)

The total gain can be obtained by comparing as(x = 0) and as(x = D),
where D is the total length of the TWPA. Thus,

Gs =

∣∣∣∣
as(x = D)

aS(0)

∣∣∣∣
2

= cosh2(gD) +

(
∆k

2g
sinh(gD)

)2

, (8.10)

where g is the reduced gain, defined as

g =

√
γsiγ∗is −

(
∆k

2

)2

. (8.11)

As one can see, the total gain depends on ∆k, and maximum gain is obtained
at ∆k = 0. Intuitively, parametric amplification must be based on proper phase
matching of the pump and the signal. In a swing, the center of mass movements
must be performed at specific positions for the oscillation amplitude to increase,
thus phase-matching the pump and sign. Here something similar happens, if
pump distorsion of the medium is not alligned with the phase evolution of the
signal, the gain is reduced.

The phase mismatch in Eq. (8.7) depends on two terms, ∆kl and ∆knl, both
with the same sign. Achieving a phase-matching is possible by modifying the
sign of either of them. In the Kerr-reversed TWPA, the sign reversal is achieved
by modifying the nonlinear term.

8.2.2 Kerr-reversed TWPA Basics

The nonlinear phase mismatch, ∆knl, depends directly on the TWPA unit cell.
Threfore, phase matching can be performed by achieving ∆k = 0 at the single-
cell level

In [Ran21], a new TWPA design is proposed, which consists of subsituting
the Josephson junction in the model described in Section 8.2.1 by a supercon-
ducting nonlinear asymmetric inductive element (SNAIL)[Fra17], as can be seen
on Fig. 8.3. A SNAIL consists of a loop of three large junctions and a small
junction. This system resembles the C-shunted flux qubit already described in
Fig. 2.5, without the shunting capacitance. However, SNAILs are usually oper-
ated in a regime where the small Josephson junction is much smaller than the
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Figure 8.3: Kerr reversed TWPA Unit Cell. Each cell contains a SNAIL (three large junction
is parallel to r times smaller junction), and a capacitance to ground, Cg .

big junction. This ratio∗, r, is much lower than 1/3, which then operates the
circuit outside the double-well regime used in quantum annealing. Typically, r
is around 0.05− 0.1.

There is an obvious benefit with this approach in that there is no engineered
gap in the transmission, so there are no foribdden frequencies by design. By
applying a different pump frequency, the operation point can be modified, thus
allowing for gains at many different frequencies in the same device. Moreover,
there are considerably less ripples than when engineering the dispersion relation,
∆kl, due to the better impedance matching.

However, the impedance matching in this device (as well as in the disper-
sevely engineered TWPA) is achieved by adding a layer of metal on top of an
alumina layer, which adds complexity into the fabrication process.

Furthermore, this device requires a global flux bias which is generated by
an external coil. The necessity of an external coil is also detrimental for many
reasons. First, the coil needs to be manufactured, which adds an extra level
of complexity. Second, the size of a coil is tipically comparable to that of the
TWPA, thus increasing the TWPA footprint in the refrigerator, limiting its
scalability if multiple TWPAs need to be added. The flux generated by the
coil is uneven, biasing differently the individual cells, limiting the amplification
efficiency. Finally, in flux qubit experiments, sources of flux such as the external
coils can be detrimental and interfere with intended fluxes. Fluxes generated by
on-chip lines, on the other hand, can be more easily shielded by superconducting
sample boxes.

In Section 8.4 the physical design will be modified in order to improve fabrica-
tion and remove the necessity of the external coil while conserving its amplifying

∗This ratio r is the same as α in the flux qubits. However, we keep the r notation for
being consistent with the literature,
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Figure 8.4: a) g3 for different values of r and Φext. b) g4 for different values of r and Φext.

features, which are calculated in the next section.

8.3 Theoretical Design

8.3.1 Gain and Phase matching in Kerr-reversed amplifier
The unit cell of the Kerr-reversed TWPA fulfills the following current-phase
relation

I(ϕ) = rI0 sinϕ+ I0 sin

(
ϕ− ϕext

3

)
, (8.12)

where ϕext is the phase generated by the external coil. Note that here the one-
mode approximation already introduced in Section 5.3.3 is performed, where
only the main symmetric mode of the circuit is considered, assuming that the
two difference modes are negligible. Although this cannot be applied direclty
to flux qubits, it is believed[Fra17] to hold for SNAILs that work in the low r
regime.

Equation (8.12) can be expanded through Taylor and, up to leading order,
is

I(ϕ)

I0
≈ Φ0

2πL
ϕ− 3Φ0

√
RQ

π3Z3
g3ϕ

2 − 4Φ0
RQ

π2Z2
g4ϕ

3 (8.13)

where Φ0 is the superconducting flux quantum, L is the total inductance, RQ is
the resistance quantum, Z is the device impedance, and g3 and g4 are the third
and fourth order non-linearity parameters.

The non-linearity parameters g3 and g4 are the key elements of the TWPA
design. In the KrTWPA design, the third order non-linearity is suppresed,
g3 = 0, to benefit a four-wave mixing process. For this TPWA ∆κnl ∝ g4 |AP |2,
which means that the sign of this non-linear phase-mismatch depends direclty
on the sign of g4, which can be tuned by the design parameters, thus effectively
cancelling ∆kl in Eq. (8.7).
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Figure 8.5: a) g4 for different values of r for Φext = 0.5. b) Zoom on the lower r region g4 for
Φext = 0.5.

8.3.2 Design Parameters

Both g3 and g4 depend on several common circuit parameters. However, the
capacitances of the circuit are not left as variables. The Josephson capacitances,
CJ , are fixed because they are rather difficult to control in the fabrication, and
ther are usually determined by junction fabrication. Moreover, CJ is small
compared to Cg, the capacitance to ground, reducing its effect on the circuit
behaviour. Cg, on the other hand, is required to obtain the 50 Ω impedance
needed for impedance matching, so it needs to be adjusted when changing the
other parameters. Finally I0 has also been fixed for most of the parameter
exploration, because of junction fabrication requirements.

Then, g3 and g4 depend only on r and ϕext. In Fig. 8.4, the dependance
of the two non-linear coefficients is shown against r and ϕext. Two regions of
the parameter space supress g3, at ϕext = 0.0 and at ϕext = 0.5 for low values
of r. These are the region where 4-wave mixing dominates, as desired for this
device. However, the Kerr-reversal only occurs for negative values of g4, which
only occurs at the region around ϕext = 0.5.

In Fig. 8.5a), the behaviour of g4 for ϕext = 0.5 is shown, where a clear
divergence of g4 is observed at r = 1/3†. A zoom on the region lower than
r = 1/3, where g3 vanishes, is shown on Fig. 8.5b). There, it is seen that
g4 is only negative after 1/27, a value that can be calculated from the Taylor
expansion of Eq. (8.12).

Staying in the available range for r ∈ (1/27, 1/3), and setting ϕext = 0.5,
the gain simulations can be performed to decide the optimal set of parameters.
The values used in the original work are r = 0.07, ϕext = 0.5, I0 = 2.19 µA,
Cg = 250 fF, CJ = 50 fF, and N = 700.

†Note that at r = 1/3 is where the double-well regime of flux qubits starts.
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Figure 8.6: TWPA gain with default parameters and Ap = 1.9
√
rad pumping at 8 GHz.

In Fig. 8.6, the amplification for this set of parameters is calculated. This
amplification is obtained for fp = 8 GHz, as can be infered from the dip in the
tranmission relation. The amplification is higher than 20 dB in a large frequency
range. By modifying the input pump frequency all typical frequencies in the
superconducting circuit experiments (4− 8 GHz) are achieved.

An important aspect to comment for these simulations is that the initial
power Ap is unknown and not specified in the original paper‡. This value has a
strong effect in the simulation and, to the best of our knowledge, the simulations
obtained for different fp in the original work should correspond also to different
Ap. In this sense, Ap is a value left to be optimized during the experiment, and
the simulations performed here have to be repeated with real data.

Modifications on the initial parameters are seen in Fig. 8.7. Increasing the
initial Ap clearly increases the gain profile. −75 dB correspond roughly to an
amplitude of 1/

√
rad . As the exact power is to be optimized in the experiment,

this parameter is fixed to values that reproduce the original work [Ran21].
Higher r increases the gain because the non-linear |g4| is also larger. How-

ever, working at higher r largely increases L, which implies an equivalent in-
crease in the required Cg for impedance matching. Keeping Cg low is desired if
planar ground capacitance is to be used. Moreover, working at large r implies
large gradients in the g4 parameter, as seen in Fig. 8.5, which reduces TWPA
reproducibility.

I0 has an inverse dependence with gain because of its inverse relation to LJ

and, thus, with L. As seen with r, larger L implies larger gain. The value of
I0 is to be changed from the original design due to the already know-how in
the group on junction fabrication, which fixes I0 = 1.5 µA, which is lower than

‡Input powers of ∼ −75 dB are given, but the exact value used in the simulation is not
given.
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Figure 8.7: TWPA Gain profile when sweeping some parameters with respect to Fig. 8.6. The
paremeters swept are a) Pumping amplitude, Ap; b) small junction ratio, r, c) Large juntions
critical current, I0, d) Number of cells.

I0 = 2.19 µA. This gain reduction should be compensated with other parameter
changes.

Adding more cells has also the obvious effect of increasing the gain, since
the total gain is the sum of the individual unit cell gains. However, increasing
N implies a larger TWPA size, thus the fabrication will set an upper limit.

The final parameters are still not fixed, as they will depend on the exact
fabrication method, still to be determined. For the following section a lower
I0 = 1.5 µA is considered for the impedance matching, increasing the number
of cells, N , for an equivalent result. However, it is likely that more parameters
are also constrained by fabrication, thus implying further modifications.
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Figure 8.8: Sonnet modelling of the SNAIL unit cell. The two small squares on top are an
ideal capacitance and an ideal inductance, that represent the three large Josephson junction.
The two small squares on the bottom are the small Josephson modelled by an ideal inductance
and capacitance in parallel.

8.4 Physical Design

The main design goal of this work is the reduction of fabrication complexity
of Kerr-reversed TWPAs. The first goal to yield a planar structure has not
been, as described in Section 8.4.1, since the capacitance obtained with purely
planar structures is well below the requirements for impedance matching with
the current design. However, a local flux line has been proposed to remove the
necessity of the external coil.

8.4.1 Sonnet Simulations

In order to simulate the TWPA, Sonnet§ software is used, a powerful finite-
element solver widely used for measuring the rf response of microwave circuits,
as already introduced in Section 6.1.2.

Sonnet is used to compute the transmission, S21, and reflection, S11, of the
signal through a series of TWPA cells, which are the indicators of the impedance
matching of the line. The benchmark of good impedance matching is S11 <
−20 dB for the considered frequency range. Moreover, Sonnet provides the
transmission line Cg and Z0 independently to validate the results.

Quantum effects such as nonlinear LJ are not trivially implementable in
Sonnet. To simulate Josephson junctions, an ideal inductance and capacitance
were set in parallel, as seen in Fig. 8.8. The three big junctions of the SNAIL
were approximated by a single one, where both their inductance and capacitance
were added in series. Thus, the SNAIL was simulated as two of these parallel L
and C, one for big junctions and another for the small junction, connected also
in parallel.

However, the exact value LJ depends on the external flux applied. By set-
ting ϕext = 0.5Φ0 on equation Eq. (8.12), one can compute the phase ϕ∗ that

§https://www.sonnetsoftware.com/
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Figure 8.9: Sonnet simulations are performed with 2, 10, 50, 100 and 500 unit cells, and then
they are cascaded up to 500 cells.

minimizes the energy, which is ϕ∗ = π regardless of the value of r. Computing
the inductance of both terms in the expression shows that the small junction
should have negative inductance. Luckily, Sonnet allows for negative inductance
values. Notice that a negative value for Josephson inductance increases the total
L when connected in parallel for this range of parameters.

The total amount of cells that can be simulated with accuracy with Sonnet
is limited unless one has several days (or weeks) to wait for the results of every
simulation. To overcome that limitation, the python library skrf has been used
to cascade lower cell results. skrf is an open-source library for RF/Microwave
engineering.

To validate the skrf cascading method, a Sonnet simulation of a TWPA with
500 unit cells has been performed. Then, this simulation is compared with the
result of smaller Sonnet TWPA simulations of 100, 50, 10, and 2 unit cells, and
then cascading the result with skrf. The results in Fig. 8.9 show the agreement
between all the different subdivisions, except for the smallest slicing of 2 cells.
From now on, simulations are performed on 10 unit cells and cascaded to the
final desired number of cells.

8.4.2 Planar Designs

The design shown in Fig. 8.10, consists of the junction loop with finger capac-
itances to ground. The device, in contrast to original KrTWPA, is a coplanar
waveguide (CPW). Notice that the fingers to ground are only on one of the
sides. The main reason for this is to leave the other side free to add a flux line
in subsequent iterations. The resulting simulations show that the capacitance
is far from the required for Z = 50 Ω by almost two orders of magnitude.

Several different iterations made it clear that the CPW approach could not
provide the necessary Cg for impedance matching with the previous theoretical
parameters. There are three alternative work arounds for this limitation. One
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Figure 8.10: The global 10 unit cells of the first design test is shown on the left, with a zoom
on two unit cells on the right. The SNAIL loop is modelled on the bottom and the finger
capacitance to ground on the top.

would be to reduce the unit cell inductance by, at least, an order of magnitude.
However, this would reduce the obtained gain, which would require either in-
creasing the number of cells accordingly, making the TWPA impractically large,
or changing the value of r, working in the regime with a large gradient, whose
exact value is very difficult to control.

Another alternative would be to reduce the spacing between the ground
plane and the feedline, which could have a huge impact on the capacitance.
However, this would require an e-beam capable of working on the whole chip
area, which was not available at that moment.

Finally, a multilayer structure with alumina in between metallic layers can
be used, as performed in the original design. This is the approach taken in
subsequent sections.

8.4.3 Multilayer designs

Simulations on the original KrTWPA are performed to validate the new method.
It is important to note that, to our knowledge, simulations in the original design
were performed considering an effective metamaterial with an inductance per
length defined by LJ and disregarding CJ . The design is shown in Fig. 8.11,
with the same central feedline with the junction loop (left) and a full metallic
lid on top (right), with ∼ 35 nm-thick alumina in between.

The results depicted in Fig. 8.12 show that the thickness, d, found for optimal
impedance matching was comparable to the described in their work, around
35 nm. S11 shows low reflection along all the considered range, which is a good
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Figure 8.11: The microstrip geometry consists of the series of unit cells without ground plane
(left) and a metallic layer on top (right) with alumina in between. This model consists of 10
unit cells.
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Figure 8.12: Comparison between the microstrip geometry with the original work parameters,
and the simulation with the new value of I0 = 1.5 µA

indicator of impedance matching. Apart from S11, Sonnet also outputs Z0 and
Cg which validate the impedance matching, since Z0 ≈ 50 Ω and Cg ≈ 250 fF,
as predicted by [Ran21].

Figure 8.12 also shows the simulations performed with the new values, which
differ from the original values in the value of I0, now 1.5 µA for convenience
for fabrication. A full reflection at high frequencies occurs because there is a
stopband at f = 1/

√
LCg ≈ 9.5 GHz, where L is the total loop inductance.

Reducing I0 causes an increase in L, and consequently also in Cg so that Z =√
L/C = 50 Ω. These two increments provokes a reduction in the TWPA

stopband, that lowers until the useful cQED range.
Therefore, the circuit parameters decided on Section 8.3.2 have to be mod-
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Figure 8.13: Microstrip as shown in Fig. 8.11 with the addition of a flux line close to the
TWPA unit cells (left), with a metallic layer on top (right) with alumina in bewteen.

Figure 8.14: Reflection of the microstrip design with a flux line on the side from

ified so that the stopband is pushed higher in frequency. This implies either
increasing I0, or reducing r. The former is chosen, and I0 = 2.19 µA, so the
original values are recovered. However, again, fabrication limitations will set
the viable range of parameters.

The design shown in Fig. 8.13 is similar to the one shown in Fig. 8.12, with
an extra line added close to the feedline. This line is intended to carry current,
thus biasing the TWPA devices.

Placing such a close line could impact the transmission profile. However, the
important element to consider is that the inductance of this flux line is much
lower than the main feedline which, combined with the large capacitance, causes
a huge impedance mismatch, thus not allowing the feedline signal to propagate
through this line.

In Fig. 8.14, |S11| reflection of this TWPA design is shown. One can see that
this extra line does not have a large effect on the results, mostly staying below
−20 dB for the studied range.

However, the flux line can carry DC current, which is required for biasing
the flux of the SNAILs, since zero-frequency signals can safely travel without
impedance matching. Finally, an extra benefit of this flux line is that the biasing
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Figure 8.15: Design with CPW-like structure of the TWPA unit cell, in the left. The center
part contains the unit cells, with ground on both sides of the CPW. On one side there are
pads capacitively coupled to the top layer, on the right figure. The top layer has a big line
that serves as extra capacitance for impedance matching, and the thinner one has current
flowing through. Alumina fills the space between both layers.

of the unit cells is more uniform than with an external coil, which is expected
to increase the amplification efficiency.

Similar results can be obtained with alternative designs. For example, the
flux line could be place on top if the top metallic layer can be patterned, as seen
in Fig. 8.15. Another option would be the current to flow through the same top
metallic layer that serves as the capacitor pad.

8.5 Conclusions & Future Work
An alternative design of Kerr-reversed TWPA has been proposed in which a
flux line is directly placed on the chip and there is no need for an external
coil. Leakage to this line is automatically reduced by impedance mismatching.
Moreover, the parameter space has been narrowed, and it was shown that lower
values of I0 produced a stopband that limited the transmission at very low
frequencies.

The final physical design and theoretical design parameters are not yet fixed
and left for the fabrication limitations. The following steps are indeed to charac-
terize the new possible junction values. Once these are obtained, the final design
parameters have to be chosen with the tools presented in this work. Impedance
matching with a layer of alumina on top should be easy to obtain by using the
simulation templates developed in this work. With the final design, a TWPA
should be fabricated and tested.

Finally, other options would be to explore different nonlinear unit cells. The
SNAIL with three big junction was just reproduced from the original KrTWPA,
but the number of junctions is still a parameter that can be modified. Moreover,
different unit cells based on Josephson junction are to be explored. Together
with the proposed strategies of reducing the capacitance demands, a planar
structure could still be achieved.
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Chapter 9

Conclusions and Perspectives

9.1 Conclusions

In this thesis, the development of building blocks to engineer coherent quantum
annealers in the QCT lab at IFAE has been started. At the same time, these
developments have represented the first coherent control of both a transmon
qubit and a flux qubit in the QCT group, being the first-ever coherent control
of superconducting qubits in Southern Europe.

Prior to flux qubit experiments, transmon qubit measurements were per-
formed to properly validate the QCT lab setup, while developing all the soft-
ware and hardware machinery for time-domain qubit control techniques. A
Universal Approximant algorithm was implemented on the transmon qubit to
demonstrate the approximation power of single-qubit quantum circuits, as proof
of the group’s capabilities of qubit coherent quantum control.

Flux qubits were designed so that they could perform coherent annealing
schedules. The theoretical design was conceived with special focus on achieving
low persistent currents, and thus long coherence times. A dispersive readout was
designed to implement common coherence time benchmarking. A comparison
with other types of flux qubits, along with a preliminary coupled prototype and
a guide on how to perform annealing schedules, has been performed.

The flux qubit measured had decay times as high as > 40 µs, which are
indicative of good quality for flux qubits. Moreover, the coherent control was
realized at different flux locations to provide insights from noise mechanisms.
However, no control a low frequencies close to the symmetry point was possible
in these devices and more tests will be required. The decoherence times observed
were very low, reaching a maximum value of 13 ns away from the optimal coher-
ence conditions. This value is likely limited by flux noise, and is expected to be
reduced closer to the qubit’s symmetry point. All these results provide feedback
on the Hamiltonian design performed in this thesis, and suggest possible routes
to improve the qubit devices (see Section 9.2.2).

Moreover, a thorough analysis on the aluminum magnetic penetration depth,
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λ, for thin superconducting films has been developed for varying thicknesses,
reaching values of λ = 163 nm for 25 nm-thick films, and getting close to the
bulk value, λbulk = 50 nm, for the thickest 200 nm films, with λ = 54 nm.
This characterization, that was missing in the literature, provides a valuable
resource for better superconducting circuit design. The dependence of the ki-
netic inductance on λ is known, so the calibration performed is particularly
useful for flux-sensitive devices, such as flux qubits. New fitting and simula-
tions techniques have been developed, while also pointing out the possibility
that thin-film aluminum changes superconductivity type within the range stud-
ied (20− 200 nm).

Finally, a new physical design of a Kerr-reversed TWPA has been developed,
removing the need of an external coil, which improves its usability and reducing
the amplifier footprint. This development is key for scaling up the qubit readout
technology.

9.2 Perspectives

9.2.1 Universal Approximant

The natural continuation of the Universal Approximant algorithm would be
to directly optimize the parameters in the superconducting device. An extra
addition of a TWPA to the current setup would speed the measurement process,
together with a more efficient software control. However, it is important that
other training algorithms are explored. The gradient-based algorithms will have
to face sampling noise even if single-shot with high fidelity is achieved. Genetic
algorithms, on the other hand, take too many evaluations of the cost function to
reach the final results. Therefore, other gradient-free algorithms would probably
be required to train the qubit.

9.2.2 Flux Qubits

The devices measured in this thesis can still hold interesting experimental work.
Driving through the local flux line the qubit may be operated in the sweet spot.
If that is achieved, a full noise characterization could provide insights on the
noise limitations. Moreover, single-qubit quantum annealing routines can be
performed to understand the role of coherence in annealing.

The results in this thesis show that larger dispersive shifts would be bene-
ficial for a more efficient readout during the whole flux range. The fabrication
accuracy should be also improved in order to meet the target design values. For
the upcoming device generation, it is necessary that they take place in house.

Furthermore, a natural step forward in the development of quantum anneal-
ers would be to measure coupled devices. An initial coupling mechanism has
been proposed, which could serve as a benchmark of coupled devices. However,
different couplers could be explored to provide a larger coupling without the
need to increase the persistent current of the qubits or the mutual inductance.
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The control of the qubit could also be improved by replacing the small junc-
tion with a DC-SQUID so that the qubit gap, ∆, is tunable, and its value can
be increased to reduce thermal effects.

In order to move towards a many-qubit quantum annealer, current-based
readout must be incorporated, which could consist in substituting the end path
of a readout resonator with a flux-sensitive element. This would mainly imply
an extra flux line, but the rest of the dispersive measurement should not be
dramatically modified.

Regarding the flux qubit Hamiltonian analysis, the work in comparing dif-
ferent flux qubits points out that the single-variable approximation used in the
literature is not valid for the low-junction number, and the role of extra the
difference modes is not fully understood. In this direction, increasing simula-
tion capabilities by using more powerful computational resources could allow
identifying under which circumstances the single-mode approximation correctly
predicts the qubit behavior.

Finally, the most optimal flux qubit circuit design for quantum annealing is
still to be found. In this sense, a coherent quantum annealer prototype could
provide very important information regarding the effect of decoherence in quan-
tum annealing, which may lead to improved qubit designs.

9.2.3 Magnetic Penetration Depth of Thin Film Super-
conducting Aluminum

Although the magnetic penetration depth has been calibrated for thin film su-
perconducting aluminum, a more systematic study could be performed on some
of the thin film parameters. For example, a thorough analysis on the fabrication
process could provide information about the effect of the aluminum quality in
the penetration depth.

In order to properly determine the superconductivity type of aluminum two
experiments have been conceived, both focusing on identifying the presence of
vortices in the film. First, replicating an experiment of trapping single vortices
on Nb [Nsa14] could be replicated on Al, focusing on varying the film thickness.
Another alternative would be to use imaging techniques to identify the presence
of vortices, as well as its distribution.

Another path would be to develop applications based on the results of this
thesis study, such as generating superinductors based on thin-film aluminum.
With thick enough films becoming type-I superconductors, an experiment could
compare the results with the use of grounds with holes to remove the presence
of vortices.

9.2.4 Kerr-reversed TWPA
The next step of the work in TWPA design will be to fabricate the devices. For
that, new Josephson junction fabrication procedures must be performed to yield
the required IC for the amplifier. Then, a new iteration of the design values
should be implemented.
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In order to obtain coplanar waveguide amplifiers, increased ebeam capabili-
ties are needed, or the circuit element should be changed. Indeed, SNAIL’s could
be replaced with another nonlinear superconducting circuit to explore whether
the amplification can be achieved without such a high inductance. This could
lead to lower capacitance requirements that may be fulfilled with planar capac-
itances.
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Appendix A

Circuit Quantization

A.1 Introduction

As an example we will use the following circuit

LRCR

CC I0

I0

αI0 •Φ

Note that in this circuit we have three kinds of elements: capacitors, induc-
tors and Josephson Junctions (from now on, JJ).
The purpose is to write the Hamiltonian of these circuits. However, first the
Lagrangian should be obtained. For that, we will use Kirchhoff laws and an
arbitrary description of the system.

A.2 Rules

A set of rules will be given so that following them, one arrives to the correct
Hamiltonian. The idea is to obtain the movement equations for each node by
using the Kirchhoff relations for currents in a node

∑
Iin =

∑
Iout (A.1)
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Once we have the equations of motion, the Lagrangian can be obtained knowing
the relation

d

dt

(
∂L
∂ẋi

)
=
∂L
∂xi

(A.2)

where qi can be any coordinate. This last expression gives the movement equa-
tions for coordinate i.
Our coordinates will always be the magnetic flux Φi. Hence, the first we should
know is the intensity of every component in terms of the flux.

A.2.1 Basic components

We will deal with three basic components: capacitances, inductors and JJ. Every
component has a different relation of the current, also depending on the current
direction.

A.2.1.1 Capacitance

A capacitance is an element which stores charge and is characterized by its
capacitance C.

i
C

j

According to the direction of the intensity, the relation is

I = C(Φ̈j − Φ̈i) (A.3)

A.2.1.2 Inductance

An inductance is an element which develops a voltage when you change the
current through it and is characterized by its inductance L.

i L j

According to the direction of the intensity, the relation is

I =
Φj − Φi

L
(A.4)



A.2. RULES 237

A.2.1.3 Josephson Junction

A JJ is a circuit element made up of a tunnel junction between two supercon-
ductors. It is characterized by its capacitance CJ and its so-called Josephson
energy EJ , assuming the resistive channel to be negligible. The relation be-
tween the current and the voltage through it is nonlinear and that makes it
a key component for qubits. The JJ acts as an ideal JJ and a capacitance in
parallel.

•
i

•
j

=
i j

Then, each JJ has to be decomposed into its ideal JJ and its capacitance.
The intensity flowing through a capacitance has already been written. Then,
only the ideal JJ must be taken into account.

•
i

•
j

The intensity through an ideal JJ is, according to the current sign

I = Io sin

(
2π

Φ0
(Φj − Φi)

)
(A.5)

, where the following relation between the magnetic flux and the superconduct-
ing phase must be noted

φ =
2π

Φ0
Φ (A.6)

being Φ0 =
2e

h
the superconducting flux quantum.

A.2.2 Spanning tree

1. First, all the nodes should be identified. Then, one of them should be
put as ground. This is the same as chosing a zero in the energy or in a
coordinate system.

In our circuit the ground is already chosen, but could be any other. Note
that there are two grounds because they are connected and, then, at the
same voltage. All the remaining nodes are called active nodes. Let’s put
a letter on each of them.
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•
G

LRCR

•
C

CC

•
B

I0

I0

αI0 • A

•G

Φ

2. Now, from the ground mode, all the nodes must be connected following
only one path. That means, you choose branches in a way that you can go
from the ground until every point following only one branch. The chosen
branches will form the spanning tree. The remaining branches will be
called closure branches and its flux will be given by the constraints of the
circuit.

•
G

LRCR

•
C

•
B

CC

• A

•G

I0

I0

αI0 Φ

3. An arbitrary direction of the intensity in every branch has to be chosen.
It has no importance, but it is necessary for being consistent.

•
G

LRCR

•
C

•
B

CC

• A

•G

I0

I0

αI0 Φ

4. Now the relation between the branch fluxes and the node fluxes depends
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on which tree has been chosen. The following branch, 1, has a circuit
element and is between the nodes i and j.

i j

1

For the spanning branches, the relation is as follows

Φ1 = Φj − Φi (A.7)

However, for closure branches, it can hold a flux. If the closure branches
are enclosing a closed loop surrounded by inductances or JJ, then a flux
must be added to the relation. The sign of the flux is not clear, but one
must be consistent. In our case, we decide the direction of the flux (if
escaping from the page or going inwards), and then we sum it when the
direction of the branch intensity coincides with that provoked by the flux,
and negative if they go in opposite directions. Then, whenever there’s a
flux, the relation is

Φ1 = Φj − Φi ± Φ (A.8)

Now we have all the necessary to obtain the Hamiltonian of our circuit. The
steps are:

• Movement Equations

• Lagrangian

• Conjugate moment

• Hamiltonian

A.3 Procedure

A.3.1 Movement equations
We must obtain three movement equations, for each of the three active nodes:
A, B and C. We will use the Kirchhoff law

∑
Iin =

∑
Iout

• Node A
∑

Iin = CJ

(
Φ̈A − Φ̈G

)
+ I0 sin

(
2π

Φ0
(ΦA − ΦG)

)

= CJ Φ̈A + I0 sin

(
2π

Φ0
ΦA

) (A.9)

∑
Iout = CJ

(
Φ̈B − Φ̈A

)
+ I0 sin

(
2π

Φ0
(ΦB − ΦA)

)
(A.10)
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Now, matching both equations, we reorganize the terms depending on the
second time derivatives of the flux on the left side and the terms depending
on the flux on the right-hand side, as it will be easier for later. Then, the
movement equation for node A is

CJ

(
2Φ̈A − Φ̈B

)
= I0 sin

(
2π

Φ0
(ΦB − ΦA)

)
− I0 sin

(
2π

Φ0
ΦA

)
(A.11)

• Node B

∑
Iin = I0 sin

(
2π

Φ0
(ΦB − ΦA)

)
+ CJ

(
Φ̈B − Φ̈A

)

+ αI0 sin

(
2π

Φ0
(ΦB − ΦG − Φ)

)
+ αCJ

(
Φ̈B − Φ̈G

)

= I0 sin

(
2π

Φ0
(ΦB − ΦA)

)
+ αI0 sin

(
2π

Φ0
(ΦB − Φ)

)

+ CJ

(
Φ̈B − Φ̈A

)
+ αCJ Φ̈B

(A.12)

∑
Iout = CC

(
Φ̈C − Φ̈B

)
(A.13)

Combining both and reorganizing the terms we arrive to the movement
equation for node B.

CJ

(
Φ̈B − Φ̈A

)
+ αCJ Φ̈B + CC

(
Φ̈B − Φ̈C

)
= −I0 sin

(
2π

Φ0
(ΦB − ΦA)

)

−αI0 sin
(
2π

Φ0
(ΦB − Φ)

)

(A.14)

• Node C ∑
Iin = CC

(
Φ̈C − Φ̈B

)
(A.15)

∑
Iout = CR

(
Φ̈G − Φ̈C

)
+

ΦG − ΦC

LR

= −CRΦ̈C − ΦC

LR

(A.16)

Hence, the motion equations for node C are,

CC

(
Φ̈C − Φ̈B

)
+ CRΦ̈C = −ΦC

LR
(A.17)
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A.3.2 Lagrangian
The final step for finding the Lagrangian is to integrate all three movement
equations, knowing that

d

dt

(
∂L
∂Φ̇i

)
=

∂L
∂Φi

(A.18)

Then we will obtain the dependence of the Lagrangian on each of the variables.
Combining the three parts of the Lagrangian, avoiding the repetition of terms,
one will obtain the final Lagrangian, except for constant terms.

• Node A
Integrating equation A.11 on both sides, we obtain

L = CJ

(
Φ̇2

A − Φ̇AΦ̇B

)
+ EJ cos

(
2π

Φ0
(ΦB − ΦA)

)

+ EJ cos

(
2π

Φ0
ΦA

)
+ fA

(
ΦB , Φ̇B ,ΦC , Φ̇C

) (A.19)

• Node B
Using now equation A.14

L = CJ

(
Φ̇2

B

2
− Φ̇AΦ̇B

)
+ αCJ

Φ̇2
B

2
+ CC

(
Φ̇2

B

2
− Φ̇BΦ̇C

)

+ EJ cos

(
2π

Φ0
(ΦB − ΦA)

)
+ αEJ cos

(
2π

Φ0
(ΦB − Φ)

)

+ fB

(
ΦA, Φ̇A,ΦC , Φ̇C

)

(A.20)

• Node C
Finally, with A.17

L = CC

(
Φ̇2

C

2
− Φ̇BΦ̇C

)
+ CR

Φ̇2
C

2
+

Φ2
C

2LR

+ fC

(
ΦA, Φ̇A,ΦB , Φ̇B

) (A.21)

Combining all the terms, except for constant terms, the total Lagrangian
results in

L = CJ

(
Φ̇2

A − Φ̇AΦ̇B +
Φ̇2

B

2

)
+ αCJ

Φ̇2
B

2
+ CC

(
Φ̇2

B

2
− Φ̇BΦ̇C +

Φ̇2
C

2

)

+ CR
Φ̇2

C

2
+

Φ2
C

2LR
+ EJ cos

(
2π

Φ0
ΦA

)
+ EJ cos

(
2π

Φ0
(ΦB − ΦA)

)

+ αEJ cos

(
2π

Φ0
(ΦB − Φ)

)

(A.22)
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Reordering the terms one arrives the final expression

L =
CJ

2
Φ̇2

A +
CJ

2

(
Φ̇A − Φ̇B

)2
+ α

CJ

2
Φ̇2

B +
Cc

2

(
Φ̇B − Φ̇C

)2

+
CR

2
Φ̇2

C +
Φ2

C

2LR
+ EJ cos

(
2π

Φ0
ΦA

)
+ EJ cos

(
2π

Φ0
(ΦB − ΦA)

)

+ αEJ cos

(
2π

Φ0
(ΦB − Φ)

)
(A.23)

A.3.3 Conjugate Momentum and Hamiltonian
Once the Lagrangian has been obtained, the next steps are fairly simple and
will not be written. The next step is to find the conjugate momenta, which will
be the charge at each node.

qi =
∂L
∂Φ̇i

(A.24)

And from here, one just has to follow the final expression for obtaining the
Hamiltonian

H =
∑

i

Φ̇iqi − L (A.25)

To quantize the Hamiltonian one just has to promote the flux and the charge
to quantum mechanical operators

Φi −→ Φ̂i

qi −→ q̂i
(A.26)

following the commutation relations
[
Φ̂i, q̂j

]
= δijiℏ (A.27)



Appendix B

4-Josephson Junction Flux
Qubit Hamiltonian

Csh

Ic, CJ

Ic, CJ

Ic, CJ

α
Φe

The Hamiltonian of the flux qubit above is

H =
(2e2)

2CJ

1

3a+ 1
×
{
(2a+ 1)(n21 + n22 + n23)− 2a(n1n2 + n1n3 + n2n3)

}

− EJ

[
3∑

i=1

cos(ϕi) + α cos(

3∑

i=1

ϕi + 2πf)

]
,

(B.1)
where EJ and CJ refer to the big junction, and a ≡ α+ Csh/CJ .
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Appendix C

Qubit-Resonator Coupling

C.1 Introduction

We want to obtain the coupling strength and the dispersive shift and, in general,
the interaction between a 4-Josephson junction flux qubit and a quarter-wave
resonator. For that, the steps we will follow is: i) quantize the circuit; ii)
follow the mathematical development for an easy simulation; iii) simulate it; iv)
analyze the results. For the derivation we have closely followed [Ino12], where
the difference is that their flux qubit consists only of three junctions and has no
shunting capacitance.

C.2 Circuit Quantization

The circuit we want to quantize is the following.

LRCR

CC

Csh

EJ

EJ

EJ

αEJ

• A

• B

CD

Φ

We should say a few things. As we see, on the right we have our 4-Josephson
junction C-shunted flux qubit, with one junction α times smaller than the other
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three. This qubit is coupled via a coupling capacitor, CC to a resonator. This
resonator is actually a quarter-wave resonator, but it can be modeled as an LC
resonator. According to [Poz90], the equivalent circuit of a λ/4 resonator has
the following values:

C =
π

4ω0Z0
,

L =
1

ω2
0C

.
(C.1)

C.2.1 Nodes, spanning tree and direction

For circuit quantization [Voo16], already explained in Appendix A, one has to
decide the nodes and the spanning tree. The nodes have already been shown
in the figure. The spanning tree chosen is easily seen if you go from the right
ground until D, going gnd-A-B-C-D. Then one has to choose arbitrary directions
which are a bit more difficult to explain, so here’s the picture. Remember that
these directions will not be important in the final Hamiltonian, but need to be
chosen to be consistent throughout the procedure.

LRCR

CC

Csh

EJ

EJ

EJ

αEJ

• A

• B

CD

Φ

C.2.2 Movement equations

Once all the decisions have been made, it’s time to find the movement equations
for each node following the Kirchhoff’s current law for the current incoming and
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outgoing each node,
∑
Iin =

∑
Iout. The resulting equations for each node are

A : CJ

(
2ϕ̈A − ϕ̈B

)
= I0 sin

(
2π

Φ0
(ϕB − ϕA)

)
− I0 sin

(
2π

Φ0
ϕA

)
,

B : CJ

(
2ϕ̈B − ϕ̈A − ϕ̈C

)
= I0 sin

(
2π

Φ0
(ϕC − ϕB)

)
− I0 sin

(
2π

Φ0
(ϕB − ϕA)

)
,

C : CJ

(
ϕ̈C − ϕ̈B

)
+ CC

(
ϕ̈C − ϕ̈D

)
+ (Csh + αCJ) ϕ̈C =

αI0 sin

(
2π

Φ0
(Φ− ϕc)

)
− I0 sin

(
2π

Φ0
(ϕC − ϕB)

)
,

D : CRϕ̈D + CR

(
ϕ̈D − ϕ̈C

)
= −ϕD

LR
.

(C.2)

C.2.3 Lagrangian

Using the Euler-Lagrange equations,
d

dt

(
∂L
∂Φ̇i

)
=

∂L
∂Φi

to the previous equa-

tions, one obtains the following Lagrangian

L =
CJ

2
ϕ̇2A +

CJ

2

(
ϕ̇A − ϕ̇B

)2
+
CJ

2

(
ϕ̇B − ϕ̇C

)2
+
CC

2

(
ϕ̇C − ϕ̇D

)2

+
Csh + αCJ

2
ϕ̇2C +

CR

2
ϕ̇2D + EJ cos

(
2π

Φ0
ϕA

)
+ EJ cos

(
2π

Φ0
(ϕB − ϕA)

)

+ EJ cos

(
2π

Φ0
(ϕC − ϕB)

)
+ αEJ cos

(
2π

Φ0
(Φ− ϕC)

)
− ϕ2D

2LR
.

(C.3)

It is more useful to write it in terms of branch variables, so that we have
the flux at the junctions, the capacitance and the inductance instead of in the
nodes. Then, looking at the circuit, one can easily find the following variable
change

ϕ1 = ϕA − ϕgnd = ϕA

ϕ2 = ϕB − ϕA

ϕ3 = ϕC − ϕB

ϕR ≡ ϕD ,

(C.4)

where 1, 2 and 3 are the big junctions and R refers to the resonator. Also, one
can note that ϕ1 + ϕ2 + ϕ3 = ϕC . Then, the Lagrangian looks like
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L =
CJ

2

(
ϕ̇21ϕ̇

2
2 + ϕ̇23

)2
+
Csh + αCJ

2

(
ϕ̇1 + ϕ̇2 + ϕ̇3

)2

+
CC

2

(
ϕ̇1 + ϕ̇2 + ϕ̇3 − ϕ̇R

)2
+
CR

2
ϕ̇2R − ϕR

2LR

+ EJ

[
cos

(
2π

Φ0
ϕ1

)
+ cos

(
2π

Φ0
ϕ2

)
+ cos

(
2π

Φ0
ϕ3

)

+α cos

(
2π

Φ0
(ϕ1 + ϕ2 + ϕ3 − Φ)

)]
.

(C.5)

Another change is actually welcomed, as it is more convenient to deal with

phase variable instead of flux variables, φi =
2π

Φ0
ϕi, defining the new magnetic

frustration parameter, f ≡ Φ

Φ0
. There’s even another convenient mass defini-

tion:

m′
1 ≡

(
Φ0

2π

)2

[(1 + α)CJ + Csh + CC ] ≡ m′
2 ≡ m′

3

m′
4 ≡

(
Φ0

2π

)2

[αCJ + Csh + CC ]

m′
C ≡

(
Φ0

2π

)2

CC

m′
R ≡

(
Φ0

2π

)2

(CC + CR) .

(C.6)

With all these new definitions one arrives at the following expression of the
Lagrangian

L =
1

2
m′

1φ̇
2
1 +

1

2
m′

2φ̇
2
2 +

1

2
m′

3φ̇
2
3 +m′

4 (φ̇1φ̇2 + φ̇1φ̇3 + φ̇2φ̇3)

+ EJ cosφ1 + EJ cosφ2 + EJ cosφ3 + αEJ cos (φ1 + φ2 + φ3 − 2πf)

−m′
C φ̇R (φ̇1 + φ̇2 + φ̇3) +

1

2
m′

Rφ̇
2
R − 1

2L

(
Φ0

2π

)
φ2
R .

(C.7)

The generalized momenta, pi =
∂L
∂φ̇i

is now easier to compute and one find

the following matrix relation



p1
p2
p3
pR


 =




m′
1 m′

4 m′
4 −m′

C

m′
4 m′

1 m′
4 −m′

C

m′
4 m′

4 m′
1 −m′

C

−m′
C− m′

C −m′
C m′

R







φ1

φ2

φ3

φR


 (C.8)

C.2.4 Hamiltonian
Using the Legendre transformation, H =

∑
i piφ̇i −L we arrive at the Hamilto-

nian, which can be written as
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H =
1

2
p⃗TM−1p⃗+ U , (C.9)

where M−1 is the inverse of the previous mass matrix and can be expressed as

M−⊮ =




m−1
1 m−1

4 m−1
4 m−1

c

m−1
4 m−1

1 m−1
4 m−1

c

m−1
4 m−1

4 m−1
1 m−1

c

m−1
c m−1

c m−1
c m−1

R


 , (C.10)

where these are new mass variables and, thanks to mathematica or python
library simpy, one can get the exact expression of these variables,

m1 =

(
Φ0

2π

)2

CJ

[
1 +

(α+ β)(δ + γ) + δγ

(2α+ 2β + 1)(δ + γ) + 2δγ

]
,

1

m4
=

1

m1
−
(
2π

Φ0

)2
1

CJ
,

mC =

(
Φ0

2π

)2

CJ
F

γ
,

mR =

(
Φ0

2π

)2

CJ
F

3α+ 3β + 3γ + 1
,

(C.11)

and we have defined a few more parameters

β ≡ Csh

CJ
,

γ ≡ CC

CJ
,

δ ≡ CR

CJ
,

F = (3α+ 3β + 1)(γ + δ) + 3δγ .

(C.12)

So, now, we have three Hamiltonians,

H = Hq +HR +HC , (C.13)

being the qubit, resonator and coupling Hamiltonian respectively. Using the

relation ni =
2π

Φ0

pi
2e

and EC =
e2

2CJ
we can define the qubit Hamiltonian

Hq =4EC

{[
1 +

(α+ β)(δ + γ) + δγ

(2α+ 2β + 1)(δ + γ) + 2δγ

]−1

(n21 + n22 + n23)

+2
(α+ β)(δ + γ)− δγ

(3α+ 3β + 1)(δ + γ) + 3δγ
(n1n2 + n1n3 + n2n3)

}

− EJ [ cosφ1 + cosφ2 + cosφ3 + α cos (φ1 + φ2 + φ3 − 2πf) ] .

(C.14)
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And this Hamiltonian is ready to be diagonalized. Next, let’s look at the
resonator Hamiltonian

HR =
p2R
mR

+
1

2LR

(
Φ0

2π

)
φ2
R , (C.15)

which can be redefined in the harmonic way

HR =
p2R
mR

+
1

2
mR ω

2
R φ

2
R , (C.16)

where we get the loaded resonant frequency

ωR =
1√

LRCR

(
1 +

(3α+ 3β + 1)γ

(3α+ 3β + 3γ + 1)δ

)1/2

. (C.17)

Now the Hamiltonian can be rewritten as usual

HR = ℏωR(a
†a+

1

2
) , (C.18)

with

φR =

√
ℏ

2mR ωR
(a† + a)

pR = i

√
ℏmR ωR

2
(a† − a)

(C.19)

In this situation we already know the eigenstates and eigenvalues of this
Hamiltonian. Hence, we can move to the coupling Hamiltonian

HC = 2e

(
Φ0

2π

)
n1 + n2 + n3

mc
pR =

= 2iγ
√
ECE′

R

√
2

F (3α+ 3β + 3γ + 1)
(n1 + n2 + n3)(a

† − a) ,

(C.20)

where we have used the previous definition of F and E′
R = ℏωR

C.3 Numerical simulation

Once we have the Hamiltonians is now time to numerically find the values we
want. Remember we are interested in the coupling strength between the qubit
and the resonator and the qubit and, more specifically, the dispersive shift. The
derivation has been done following the supplementary materials of [Yan15].
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C.3.1 Qubit Hamiltonian

First, we will diagonalize our qubit Hamiltonian. Just to make it easier to
handle, we will redefine it this way

Hq =4EC

[
κ1 (n

2
1 + n22 + n23) + κ2 (n1n2 + n1n3 + n2n3)

]

− EJ [ cosφ1 + cosφ2 + cosφ3 + α cos (φ1 + φ2 + φ3 − 2πf) ] ,
(C.21)

where the constants κ1 and κ2 have absorbed all the adimensional variables.

C.3.1.1 Define states

Now we have to choose a basis for performing the simulation. As no inductance
is considered∗, it is convenient to chooses the charge basis as the basis in which
we define our states. This is computationally and mathematical convenient be-
cause the resulting matrix representation of the Hamiltonian is a block diagonal
matrix, with most of its elements equal to zero.

A general state is, then defined as

|Ψ⟩ =
nmax∑

i,j,k=−nmax

ai,j,k |i, j, k⟩ , (C.22)

where each charge state |i, j, k⟩ defines a state with i, j and k cooper pairs
on junctions 1, 2 and 3 respectively. One has to check which is the maximum
number of charges needed for the solution to converge. In our case, nmax = 10
is enough. Note that the number of states is N = (2nmax + 1)3, and so the
matrix is NxN , so the computational costs scales quickly with increasing nmax.
In this basis the capacitive part of the Hamiltonian is diagonal, making it easy
to compute. However, one has to take care of constructing the correct matrix
elements. Let’s take a closer look.

First thing, one has to order the states in some way and be consistent with
this decision. We will exemplify this process for nmax = 10 and it’s easily

∗Inductance is much smaller than Josephson one and, hence, considered negligible. If we
would like to include it, the charge basis will not be convenient for its computational costs,
and we should take a different approach.
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followed for different nmax. This will be our ordering:

|0⟩ ≡ |−10,−10,−10⟩
|1⟩ ≡ |−10,−10,−9⟩

...

|20⟩ ≡ |−10,−10, 10⟩
|21⟩ ≡ |−10,−9,−10⟩

...

|41⟩ ≡ |−10,−9, 10⟩
|42⟩ ≡ |−10,−8,−10⟩

...

...

|440⟩ ≡ |−10, 10, 10⟩
|441⟩ ≡ |−9,−10,−10⟩

...

...

...

|9260⟩ ≡ |10, 10, 10⟩

(C.23)

It is easy to check how, for an ordered state, |A⟩ , how to find the represen-
tation in the charge basis,

|A⟩ ≡ |(A div 212)− 10, (Adiv 21)− 10, (Amod21)− 10⟩ , (C.24)

where adiv b is defined as the integer division between a and b (no remainder).
Then, as an example,

|440⟩ ≡ |(440 div 212)− 10, (440 div 21)− 10, (440mod 21)− 10⟩
= |0− 10, 20− 10, 20− 10⟩ = |−10, 10, 10⟩ .

(C.25)

C.3.1.2 Capacitive terms

With the basis defined, now it’s time to check the matrix representations of the
operators n2i and ninj . For convenience, we write it as a vector and then fill
the diagonal thanks to the scipy.sparse library. It is a great idea to use the
Kronecker product applied to vectors,

a⃗⊗ b⃗ =




a1
a2
...
an


⊗




b1
b2
...
bM


 =




a1⃗b

a2⃗b
...

anb⃗


 =




a1b1
a1b2
...

a1bm
a2b1
...
...

anbm




. (C.26)
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With this product, one can define the n2i and ninj terms. Note that, ac-
cording to the ordering in (C.23), the n3 diagonal vector will be

n3 =




−10
−9
...
10
−10
...
10
...
...
...
10




= 1⃗⊗ 1⃗⊗




−10
−9
...
9
10




≡ 1⃗⊗ 1⃗⊗ n⃗ , (C.27)

where we have defined n⃗. With this in mind, the ninj diagonal vectors can be
defined as

n1n2 ≡ n⃗⊗ n⃗⊗ 1⃗ ,

n1n3 ≡ n⃗⊗ 1⃗⊗ n⃗ ,

n2n3 ≡ 1⃗⊗ n⃗⊗ n⃗ .

(C.28)

Finally, defining

n⃗2 =




(−10)2

(−9)2

...
92

102




=




100
81
...
81
100



, (C.29)

one can express
n21 ≡ n⃗2 ⊗ 1⃗⊗ 1⃗ ,

n22 ≡ 1⃗⊗ n⃗2 ⊗ 1⃗ ,

n23 ≡ 1⃗⊗ 1⃗⊗ n⃗2 .

(C.30)

Once we have the diagonal vectors of these operators, one just have to create
a matrix with these vectors in the diagonal.

C.3.1.3 Josephson terms

For computing the Josephson terms of the Hamitlonian one has note that
cos φ = (eiφ + e−iφ)/2. Then we can use the following useful relation

e±iφ |n⟩ = |n∓ 1⟩ (C.31)

so the effect of a Josephson term is

cos φ |n⟩ = 1

2
(|n+ 1⟩+ |n− 1⟩) . (C.32)
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Hence, the one-variable Josephson terms are easy to write down. For exam-
ple

EJ cos φ1 |n1, n2, n3⟩ =
EJ

2
(|n1 + 1, n2, n3⟩+ |n1 − 1, n2, n3⟩) . (C.33)

The fourth term is a bit trickier, but no so much

αEJ cos (φ1 + φ2 + φ3 + 2πf) |n1, n2, n3⟩

=
EJ

2

(
e−i 2πf |n1 + 1, n2 + 1, n3 + 1⟩+ ei 2πf |n1 − 1, n2 − 1, n3 − 1⟩

)
.

(C.34)
For writing the matrix representation, we can use again the kronecker prod-

uct. First we’ll do it for one variable basis, |n⟩, and then for the three basis
which is our case. Let’s define this matrix

MJ =




0 1 0 · · · 0
1 0 1 0
0 1 0 1
...

. . .
...

1 0 1 0
0 1 0 1

0 · · · 0 1 0




≡MJU +MJL , (C.35)

being anNxN matrix and theMJU andMJL being the upper and lower diagonal
matrices respectively. This matrix has nonzero elements just in the upper and
lower diagonals, which is computationally very efficient. With MJ you can find
the matrix representation of a general EJ cosφ term

EJ cosφ =
1

2
EJMJ . (C.36)

Now, we can extend this result to our three variable system using the Kro-
necker product. Then,

cosφ1 =
1

2
MJ ⊗ I⊗ I ,

cosφ2 =
1

2
I⊗MJ ⊗ I ,

cosφ3 =
1

2
I⊗ I⊗MJ .

(C.37)

The fourth junction matrix representation is, then,

cos (φ1 + φ2 + φ3 + 2πf) =

1

2

(
e−i 2πfMJL ⊗MJL ⊗MJL + ei 2πfMJU ⊗MJU ⊗MJU

)
.

(C.38)
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C.3.1.4 Eigenstates and eigenenergies

Once we know how to find all the matrix elements, we must write it in the
code. We must know that, since the matrices can become quite large, there
can be memory problems in the multiplications. For example, in the last case,
one would have troubles making the kronecker product of three 21x21 matrices
using the numpy.kron function. For that, we use the scipy.sparse library. We
create the vector that we will later place in the correct diagonal, which is not
the main one for the Josephson terms. For that one has to do the analysis on
which diagonal will it be and, then, place the vector there. Once done we can
sum all the matrices and then diagonalize with the eigsh function. There we
get the lowest eigenergies and eigenvectors of our Hamiltonian. These states are
then written in the charge basis. For example, our ground state will be

|Ψ0⟩ =
nmax∑

i,j,k=−nmax

a0,(i,j,k) |i, j, k⟩ , (C.39)

C.3.2 Resonator Hamiltonian

Nothing has to be done with the resonator Hamiltonian, except for writing it
in the second quantization form, as we already did in (C.18). There we find
that the appropriate basis is the number basis, |k⟩, and we already know their
eigenenergies, being (l + 1

2 )ℏωR. We will usually work in Gigahertz, so that
h = 1, and one has to remember to multiply the ω per 2π to get the energy.

C.3.3 Coupling Hamiltonian

C.3.3.1 Define states

The coupling Hamiltonian involves the two systems, so one has to think not to
end with too big matrices. For that, we will use the fact that we already know
the eigenenergies and eigenstates of both the qubit and the resonator Hamil-
tonians alone. Then, as now we are going to simulate the whole system, it’s a
good idea to use these two basis as our computational basis. Then, expressing
the qubit Hamiltonian eigenstates as |ψq⟩ with energies ϵq and the resonator
eigenstates |k⟩ with energies (l + 1

2 )ℏωR. Then, the basis we will use for our
matrix representation is

|Ψ⟩ = |ψq⟩ ⊗ |k⟩ . (C.40)

Then, the qubit and resonator Hamiltonian action over these states can be
expressed as

Hq |Ψ⟩ =(Hq ⊗ I)(|ψq⟩ ⊗ |k⟩) ,
HR |Ψ⟩ =(I⊗HR)(|ψq⟩ ⊗ |k⟩) .

(C.41)
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For the explanation, we will consider that we take the 10 lowest qubit energy
eigenstates and the 5 lowest resonator eigenstates. So, the basis will have a total
of 50 states. As we did in section (C.3.1.1), we will order our states:

|0⟩ ≡ |0, 0⟩
|1⟩ ≡ |0, 1⟩

...

|4⟩ ≡ |0, 4⟩
|5⟩ ≡ |1, 0⟩

...

...

|49⟩ ≡ |9, 4⟩

(C.42)

The way to find the relation between the ordered states and the qubit and
resonator separate basis is the following

|A⟩ ≡ |A div 5, Amod5⟩ . (C.43)

Then, as an example,

|41⟩ ≡ |41 div 5, 41mod 5⟩ = |8, 1⟩ . (C.44)

C.3.3.2 Qubit and resonator terms

Using the equation (C.41) and the fact that we know our basis, we can easily
construct our matrix representation of both Hamiltonians which will be two
diagonal matrices. Then we just sum them both. Just to make it clear, these
are the matrix representation of Hq. The rest is trivial.

Hq =




ϵ0 0 · · · 0
0 ϵ1 0
...

. . .
...

0 ϵ8 0
0 · · · 0 ϵ9




. (C.45)

C.3.3.3 Coupling terms

Let’s look again at the coupling Hamiltonian, but rewriting it in a simpler form

HC = κC(n1 + n2 + n3)(a
† − a) . (C.46)

This Hamiltonian can be written as

HC = κC HC,q ⊗HC,R , (C.47)
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where HC,q = n1 + n2 + n3 and HC,R = a† − a. We can see that neither the
qubit nor the resonator operators are in diagonal in this basis.

We can start at looking at the qubit part, HC,q. It’s not diagonal in our
basis, but it is in the charge basis, and remember that we have our eigenstates
expressed in this basis, as done for the ground in equation(C.39). Then, all we
have to do is to compute all the matrix elements, 100 in total if only the 10
lowest are chosen. Mathematically, this is

⟨ψα|HC,q |ψβ⟩ =


nmax∑

i,j,k=−nmax

a∗α,(i,j,k) ⟨i, j, k|


 (n1 + n2 + n3) ·




nmax∑

l,m,n=−nmax

aβ,(l,m,n) |l,m, n⟩


 =

nmax∑

i,j,k,l,m,n=−nmax

a∗α,(i,j,k)aβ,(l,m,n)(l +m+ n) ⟨i, j, k| |l,m, n⟩ =

nmax∑

i,j,k,l,m,n=−nmax

a∗α,(i,j,k)aβ,(l,m,n)(l +m+ n)δi,lδj,mδk,n =

nmax∑

i,j,k=−nmax

a∗α,(i,j,k)aβ,(i,j,k)(i+ j + k) .

(C.48)
It is easy to see that this is not diagonal in the eigenbasis and the symmetric
off-diagonal elements are conjugate of each other. It’s, then a dense matrix
where all the elements have to be computed in a long multiplication.

The resonator part of the coupling Hamiltonian is much easier, and it’s easily
analytically expressed

⟨k|HC,R |l⟩ = ⟨k| (a† − a) |l⟩ = ⟨k|
(√

l + 1 |l + 1⟩ −
√
l |l − 1⟩

)
=

=
√
l + 1δk,l+1 −

√
lδk,l−1 .

(C.49)

In our 5x5 case, it’s easy to write the whole matrix

HC,R =




0 −1 0 0 0

1 0 −
√
2 0 0

0
√
2 0 −

√
3 0

0 0
√
3 0 −2

0 0 0 2 0



. (C.50)

C.3.3.4 Eigenstates and eigenenergies

With the matrix representation of both HC,q and HC,R, we can write the full
coupling Hamiltonian matrix using (C.47) and summing to the previous qubit
and resonator Hamiltonian, as in eq.C.13. We can now proceed to diagonalize
it using the same procedure as it section (C.3.1.4). Then, we will have the
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eigenstates and eigenenergies of the qubit-resonator system. If, as in our case,
the qubit energy is lower than the resonator energy, we will see how the dressed
and states and see the shift of the qubit energy by the presence of the resonator.

C.4 Dispersive shift

The most important value of the qubit-resonator coupling is the dispersive shift,
that is, the difference in the resonator frequency depending on the qubit states.
This shift is the basis of our measurement procedure, so we need to make sure
it’s large enough so that we can distinguish between both states.

Let’s take a look on the full Hamiltonian

H/ℏ = ωra
†a+

∑

i

ωi |i⟩ ⟨i|+ κC(n1 + n2 + n3)(a
† − a). (C.51)

Now, we can use the identity I =
∑

i |i⟩ ⟨i| and rewrite it as (ℏ ≡ 1)

H = ωra
†a+

∑

i

ωi |i⟩ ⟨i|+
∑

ij

gij |i⟩ ⟨j| (a† − a), (C.52)

where we have defined

gij ≡ ⟨i|κC(n1 + n2 + n3) |j⟩ . (C.53)

C.4.1 Schrieffer-Wolff perturbation theory

With equation (C.52) in mind we can perform some transformations so that we
achieve a diagonal representation of this Hamiltonian. For that we will follow
what’s explained in the literature [Zhu12] [Bla21].

The Scrieffer-Wolff perturbation theory consists in finding a unitary trans-
formation acting on the unperturbed Hamiltonian, H, so that the resulting
perturbed Hamiltonian, H′, uncouples the desired subspaces, which in our case
will be the product states of the qubit and resonator Hamiltonian. These define
the projectors that will be used throughout the development,

Pq,k = |q, k⟩ ⟨q, k| (C.54)

where |q, k⟩ ≡ |ψq⟩ ⊗ |k⟩ is the product basis we will consider.
For applying the Schrieffer-Wolff, one has to express the Hamiltonian in the

following form
H = H0 + V , (C.55)

where H0 is the free Hamiltonian already diagonal in our chosen basis† and V
is a perturbation small enough so that we can treat it perturbationally.

†If what you want to uncouple is not all the states, but some subspaces, this free Hamil-
tonian must be block diagonal in your subspaces and not fully diagonal.
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To this Hamiltonian, we are going to apply a unitary transformation

H′ = eiSHe−iS , (C.56)

and apply the Baker-Campbell-Hausdorff (BCH) formula (Hadamard lema)

eiSHe−iS = H+ [iS,H] +
1

2!
[iS, [iS,H]] + . . . =

∞∑

n=0

1

n!
[iS,H]n . (C.57)

It is useful to define a parameter λ, which later will be set to one, used for
ordering the terms. This parameter corresponds to the order of perturbation of
the terms.

H = H(0) + λH(1) + λ2H(2) + . . . ,

S = λS(1) + λ2S(2) + . . .
(C.58)

where
H(0) = H0 . (C.59)

Then one can explicitly compute eq.(C.57) and order it by these parameters
λ.

H′ = H+ [iS,H] +
1

2!
[iS, [iS,H]] +O(λ3) = ,

= H0 + {λV + [iλS1,H0] }+ { [iλ2S2,H0]

+ [iλS1, λV ] +
1

2
[iλS1, [iλS1,H0]] }+O(λ3) .

(C.60)

Then, some conditions must be fulfilled. The first and most important, is
that the resulting Hamiltonian doesn’t couple different subspaces, that is

Pq,kH′Pp,l = Pq,k e
iSHe−iSPp,l = 0 ({q, k} ≠ {p, l}) . (C.61)

This condition determines all the off-diagonal elements of H′ (to 0), but for the
diagonal we will impose the following condition

Pq,kSPq,k = 0 , (C.62)

which means that the diagonal elements of generator S (that’s how it’s called)
are zero. These two conditions uniquely determines H′ and S [Zhu12]. We will
follow step by step all the development until we have our final desired dispersive
Hamiltonian. If we look at equation (C.60) one should notice that the conditions
(C.61) has to be fulfilled for every order of λ. Moreover, conditions (C.62) must
also be satisfied for every order of λ in (C.58) for the generator S.

For the zeroth order, λ0, of (C.60) it’s straightforward as H0 is already
diagonal. Let’s impose the first conditions on the order λ1.

Pq,k(V + [iS1,H0])Pp,l = 0 ({q, k} ≠ {p, l}) . (C.63)
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This leads to

⟨q, k|V |p, l⟩ = −⟨q, k| [iS1,H0] |p, l⟩ =

=− i ⟨q, k|

[
S1

(
ωRa

†a+
∑

i

ωi |i⟩ ⟨i|

)
−

(
ωRa

†a+
∑

i

ωi |i⟩ ⟨i|

)
S1

]
|p, l⟩

=− i (Ep,l − Eq,k) ⟨q, k|S1 |p, l⟩ ,
(C.64)

where we have defined Eq,k ≡ kωR + ωq. Then, the first order of the generator
can be defined as

⟨q, k|S1 |p, l⟩ = i
⟨q, k|V |p, l⟩
Eq,k − Ep,l

({q, k} ≠ {p, l}) . (C.65)

The diagonal terms are zero, since we have chosen the generator to be off-
diagonal. Equation (C.63) is also zero for diagonal terms, since V has no terms
in the diagonal and the commutator is zero ( Eq,k − Eq,k = 0).

Now we should impose the same conditions to the second order. However,
what this will give us is an expression for the second term of the generator, S2,
so that H(2) has no off-diagonal terms. This is something that we don’t need, as
we will only retain the first terms of the dispersive Hamiltonian. Hence, what
we have to do, is to obtain the diagonal terms that appear in the second order
of λ, and we will have found our dispersive Hamiltonian (up to second order).
Then,

Pi,n

(
[iS2,H0] + [iS1, V ] +

1

2
[iS1, [iS1,H0]]

)
Pi,n . (C.66)

The first term is zero ( Ei,n − Ei,n = 0 ). The last term has the commutator
[iS1,H0] which we have proved to be equal to −V for the off-diagonal terms
(C.64) and it’s also equal for the diagonal terms as both are null. Then (C.66)
is just

1

2
Pi,n[iS1, V ]Pi,n . (C.67)

Now come the hardest moment, the climax before the end. Be ready

1

2
Pi,n[iS1, V ]Pi,n =

i

2
Pi,nS1 V Pi,n − i

2
Pi,nV S1Pi,n

=
i

2
|i, n⟩ (⟨i, n|S1V |i, n⟩ − ⟨i, n|V S1 |i, n⟩) ⟨i, n| .

(C.68)
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We can add the identity
∑

j,m |j,m⟩ ⟨j,m|
i

2

∑

j,m

|i, n⟩ (⟨i, n|S1 |j,m⟩ ⟨j,m|V |i, n⟩−

⟨i, n|V |j,m⟩ ⟨j,m|S1 |i, n⟩) ⟨i, n|

=
i

2

∑

j ̸=i,m ̸=n

|i, n⟩
(
i
⟨i, n|V |j,m⟩
Ei,n − Ej,m

⟨j,m|V |i, n⟩−

i ⟨i, n|V |j,m⟩ ⟨j,m|V |i, n⟩
Ej,m − Ei,n

)
⟨i, n|

=− 1

2

∑

j ̸=i,m̸=n

|i, n⟩ ⟨i, n|
(
⟨i, n|V |j,m⟩ ⟨j,m|V |i, n⟩

Ei,n − Ej,m
− ⟨i, n|V |j,m⟩ ⟨j,m|V |i, n⟩

Ej,m − Ei,n

)
.

(C.69)
One should note that both terms are actually the same, so, in the end

Pi,nH(2)Pi,n = |i, n⟩ ⟨i, n|
∑

j ̸=i,m̸=n

(
⟨i, n|V |j,m⟩ ⟨j,m|V |i, n⟩

Ej,m − Ei,n

)
. (C.70)

We must compute the term ⟨i, n|V |j,m⟩ and we will be almost ready.

⟨i, n|V |j,m⟩ = ⟨i, n|
∑

kl

gkl |k⟩ ⟨l| (a† − a) |j,m⟩ = gij ⟨n| (a† − a) |m⟩ .

(C.71)
Then,

⟨i, n|V |j,m⟩ ⟨j,m|V |i, n⟩ = gij ⟨n| (a† − a) |m⟩ gji ⟨m| (a† − a) |n⟩ . (C.72)

With this equation I should note two things that I’m too tired to write it down.
One is that gi,j = g∗j,i. For checking, one just applies the definition of gi,j in
terms of the nX operators and does the algebra. The other thing is

⟨n| (a† − a) |m⟩ ⟨m| (a† − a) |n⟩ =
=− ⟨n| a† |m⟩ ⟨m| a |n⟩ − ⟨n| a |m⟩ ⟨m| a† |n⟩
=− ⟨n| a†a |n⟩ δm,n−1 − ⟨n| aa† |n⟩ δm,n+1

=− ⟨n| a†a |n⟩ (δm,n−1 + δm,n+1)− δm,n+1 ,

(C.73)

where we have used the commutation relation [a, a†] = 1. If one puts all these
results into (C.70),

⟨i, n|H(2) |i, n⟩ =
∑

j ̸=i,m ̸=n

(
|gij |2a†a(δm,n−1 + δm,n+1) + |gij |2δm,n+1

Ei,n − Ej,m

)
=

=
∑

j ̸=i

|gij |2 a†a
ωi + nωR − (ωj + (n− 1)ωR)

+
∑

j ̸=i

|gij |2 a†a
ωi + nωR − (ωj + (n+ 1)ωR)

+
∑

j ̸=i

|gij |2

ωi + nωR − (ωj + (n+ 1)ωR)
.

(C.74)
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Now, defining

χij =
|gij |2

ωi − ωj − ωR
≡ |gij |2

ωij − ωR
≡ |gij |2

∆ij
, (C.75)

we arrive at

∑

j ̸=i

|gij |2 a†a
ωij + ωR

+
∑

j ̸=i

|gij |2 a†a
ωij − ωR

+
∑

j ̸=i

|gji|2

ωij − ωR

=−
∑

j ̸=i

|gji|2 a†a
ωji − ωR

+
∑

j ̸=i

|gij |2 a†a
ωij − ωR

+
∑

j ̸=i

|gji|2

ωij − ωR

=
∑

j ̸=i

[
(χij − χji)a

†a+ χij

]

(C.76)

The final and desired dispersive Hamiltonian is, then

H′ = H0 +
∑

i,j ̸=i

[
(χij − χji)a

†a+ χij

]
|i⟩ ⟨i| . (C.77)

We can define the following quantities

Λi =
∑

j ̸=i

χij ,

χi =
∑

j ̸=i

(χij − χji) .
(C.78)

Then the final multilevel Hamiltonian is

H′ =

(
ωR +

∑

i

χi

)
a†a+

∑

i

(ωi + Λi) |i⟩ ⟨i| . (C.79)

Now it’s easy to see the dispersive shift as a shift in the resonator frequency
depending on the qubit state, and also a lamb shift in the qubit frequency,
ω′
i ≡ ωi + Λi.

Now if we stay just with the two lowest levels, and using σZ = |0⟩ ⟨0|−|1⟩ ⟨1|,
and using the following identity:

a0 |0⟩ ⟨0|+ a1 |1⟩ ⟨1| =
a0 + a1

2
I− δ01

2
σZ , (C.80)

where δ01 ≡ a1 − a0. Then, the Hamiltonian can be read as

H′ =

(
ωR +

χ0 + χ1

2
− χσZ

)
a†a− ω′

01

2
σZ + c I

=(ω′
R − χσZ) a

†a−
ω′
q

2
σZ ,

(C.81)
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where we have dropped constant terms, redefined the resonator and qubit fre-
quency and defined the dispersive shift as

χ ≡ 1

2
(χ0 − χ1) =

1

2


∑

j ̸=0

(χ0j − χj0)−
∑

j ̸=1

(χ1j − χj1)


 . (C.82)

One can stop the sum at j = 2 it would be

χ =
1

2
(χ01 − χ10 + χ02 − χ20 − χ10 + χ01 − χ12 + χ21)

χ =χ01 − χ10 +
1

2
(χ02 − χ20 − χ12 + χ21) .

(C.83)

And now, finally, we are ready to compute our dispersive shift up to second
or the desired order.
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Appendix D

Grounded Loop Capacitance
Extraction

1

2

3

C23

C13

C12

V

The grounded qubit loop has the circuit schematic shown above, which is
considerably simpler than the floating qubit device.

The same process is followed, however. First, the voltage node is removed,
and the Thevenin capacitance is obtained, which for this case is easy to compute
analytically by finding effective capacitances in series and in parallel

Cth = C12 +

(
1

C23
+

1

C12

)−1

. (D.1)

The Vth = βV is obtained by the Kirchhoff voltage laws, which as there is
only one loop is straightforward,

β =

(
C13

C12
+
C12

C23
+ 1

)−1

. (D.2)
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The final CC and Csh are then obtained through the same expressions as for
the floating qubit

Cth =Cc + Csh , (D.3)

Vth =
Cc

Cc + Csh
V . (D.4)
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