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Transmon devices have shown suitable features to work as qubits and thus serve as a unit of
information in quantum computers. However, a recent interest in keeping the higher dimensions of
the Hilbert space compels the search of techniques to exploit them. In this paper, the evolution of
the four first quasi-harmonic energy states of the transmon device are considered, in order to discuss
and compare four techniques to prepare 3-dimensional states.

I. INTRODUCTION

In recent years, a substantial amount of work has
been performed to develop functional quantum comput-
ers. These promise to deliver the unique features of the
quantum world so as to efficiently solve problems very
difficult to tackle with classical computers.

The basic unit of quantum computation is the quan-
tum bit, or qubit [1]. Nevertheless, the consideration of
systems with more than two states allows for more local
operations and less entangling gates might be required
for the performance of a specific computation [2]. This
makes way for the qudit formalism, where d > 2 lev-
els of a quantum state are considered in order to model
the quantum system and develop quantum gates and al-
gorithms. This is especially relevant when the physical
realization relies on a system susceptible to be measured
in more than two states, such as the superconducting
quantum circuits like the one used in this work. Other
examples include quantum dots [3], harmonic oscillator
states [4] and the rotational and vibrational states of a
molecule [5].

The superconducting transmon device is based on a
capacitively shunted Josephson junction that can be
portrayed as an artificial atom whose energy levels Ek

(k ≥ 0) can be approximated by [6]

Ek ≈ −EJ +
√

8ECEJ

(
k +

1

2

)
− EC

12

(
6k2 + 6k + 3

)
,

(1)
where EC = e2/2C is the charging energy (being C
being the shunting capacitance), and EJ = IcΦ0/2π
is the Josephson energy (Ic is the critical current and
Φ0 = h/2e is the quantum of flux in the junction) [7].
This leads to a deviation in the harmonic oscillator en-
ergy structure, that takes form in a difference of 0-1 and
1-2 transition energies, called anharmonicity (α):

~α ≡ (E2 − E1)− (E1 − E0) ≈ −EC . (2)

This allows to externally act on a specific transition.
In the present work, different techniques for the prepa-

ration of arbitrary 3-level states (qutrit) are presented
and compared. To do so, the ground state |0〉 and

the three first excited states |1〉, |2〉, |3〉 are consid-
ered. Different techniques are explored, with the pur-
pose of preparing states with wave functions |Ψ〉 in the
4-dimensional Hilbert space containing a desired mix of
populations P0, P1 and P2 in each state. The upper state
population, P3, solely an indicator that should remain
small as a sign of correct operation of our protocols.

Since the characteristic population decay time T1 has
been measured to be above 10 µs, simulations will be re-
stricted to pulses below 120 ns and considered unaffected
by decoherence. Therefore, the Schrödinger equation

i
d

dt
|Ψ〉 = H |Ψ〉 , (3)

is in each case numerically solved to find the evolution of
a state |Ψ〉 that is always regarded to be |Ψ(t = 0)〉 = |0〉
at the beginning of the evolution due to a previous relax-
ation of the system. To do so, the QuTiP package [8] has
been used on a system whose parameters are presented
in table A.I.

II. DRIVE IN N-DIMENSIONAL SYSTEMS

The coupling of a qubit, provided with a ground state
(|0〉) and excited state (|1〉), with a microwave field that
oscillates at drive frequency ωd can be described by:

H =
~ωq

2
σz + ~Ω cos(ωdt)σx, (4)

where ωq is the qubit frequency, i.e. the energy difference
between the states in units of ~, and σx, σz are the Pauli
matrices. Ω is the Rabi frequency: Ω = ~−1d ·E0, with d
the transition dipole moment and E0 the field amplitude.
As a result, the probability of a system, initially prepared
in the ground state to be measured in the excited state,
P1, is given by the Rabi formula [9]:

P1(t) =
Ω2

∆ω2 + Ω2
sin2

(√
∆ω2 + Ω2

2
t

)
, (5)

∆ω ≡ ωq − ωd being the drive detuning. The so-called
π-pulse is such that the state |1〉 is fully populated at the
end of the pulse.
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The pulse E supposed to act on the qutrit system is

E(t) = Ω(t) cos (ωdt+ Φ(t)) , (6)

with a time-dependent Rabi frequency Ω(t) and phase
Φ(t). The Hamiltonian for the qutrit system is extended
with respect to that of the qubit given in Eq. (4):

H = ~
3∑

i=1

ω0,iΠi + ~
3∑

i<j

gijΩ cosaij (ωdt+ Φ)Πij , (7)

where ~ω0,i denotes the energy difference between the 0th

and the i-th energy level, Πi and Πij are the projectors
|i〉〈i| and (|i〉〈j| + |j〉〈i|), respectively, aij is 2 if j − i =
2 –referring to a two-photon transition– or 1 otherwise.
The coupling strengths gij corresponding to correlative
energy levels are given by [6]

gj,j+1 ≈
√
j + 1

2

(
EJ

8EC

)1/4

. (8)

One-photon transitions between levels with the same
parity, e.g. transition 0-2, are approximately forbidden
[21] and not considered. However, two-photon mecha-
nisms become dominant and occur at a frequency ω02/2
[10]. The coupling strength of this mechanism is here es-
timated to be g02 ≈ g01/20 [6] and contributes only as a
small interfering process with negligible effect in our cal-
culations. As for the third excited state, g03 is taken as
g01/10 [6], and the value g13 is taken to equal g02, being
a similarly weak two-photon process at ω13/2.

When the Hamiltonian of several levels is considered,
the Rabi formula in (5) does not hold. In spite of that,
it still shows that a pulse resonant with a specific tran-
sition produces out-of-resonance excitations of the other
transitions, as can be seen in figure 1. This effect can be
mitigated by applying pulses of small magnitude Ω.

III. EXISTING PROTOCOLS

A. DRAG protocol

A widely used protocol to generate the 0-1 rotation
and purify the |1〉-state population of the qubit is the
Derivative Removal by Adiabatic Gate (DRAG) [11, 12].
This protocol aims to analytically cancel the leakage of
probability density towards the second excited state. A
pulse with shape

E(t) = Ex(t) cosωdt+ Ey(t) sinωdt, 0 ≤ t ≤ tg (9)

is suggested, where tg is the gate time, Ex and Ey are
independent quadrature controls, and the drive frequency
ωd is also time-dependent.

The conditions

Ey(t) = − 1

α

dEx
dt

and δ(t) =
λ2 − 4

4α
E2
x(t), (10)

0.00

0.25

0.50

0.75

1.00

P
op

u
la

ti
on

0 5 10 15 20 25 30 35 40

Time (ns)

0.00

0.25

0.50

0.75

1.00

P
op

u
la

ti
on

P0 P1 P2 P3 P1 (Rabi) |0〉

|1〉

|2〉

|3〉

~ω01

~ω12

~ω23

~ω02
2

~ω02
2

~ω13
2

~ω13
2

FIG. 1: State population under a pulse in resonance with
the 0-1 transition (ωd = ω01) under a flat envelope of Ω =
2π × 40 MHz (top) and Ω = 2π × 150 MHz (bottom), with
Φ = 0. The population corresponding to the two-level Rabi
formula of (5) in resonance (∆ω = 0) is plotted in a thin
dashed line. Right: Energy-level diagram of the transmon su-
perconducting device, including one-photon and two-photon
transitions. ~ω03 has been omitted for the sake of clarity.

where δ(t) ≡ ω01 − ωd(t) represents the detuning, λ =

g12/g01 =
√

2 and α ≡ ω12 − ω01 is the anharmonicity,
are shown to cancel the leakage to the second excited
state [11]. These conditions can be converted into the
current pulse parameters by:

Ω(t) =
√
E2
x(t) + E2

y (t), (11a)

Φ(t) = − arctan
Ey(t) cos δ(t)t+ Ex(t) sin δ(t)t

Ex(t) cos δ(t)t− Ey(t) sin δ(t)t
. (11b)

Knowing this, the following probe contours can be con-
sidered:

EG =

{
A exp

[
− (t− tg/2)2

2σ2

]
−B

}
, (12a)

ET =

{
A

[
tanh

(
t

σ

)
− tanh

(
t− tg
σ

)]
−B

}
, (12b)

ESP =


A sin2

(
πt

2σ

)
, t < σ

A, σ ≤ t ≤ tg − σ

A sin2

(
π(tg − t)

2σ

)
, t > tg − σ

, (12c)

being the gate time (tg) and the σ parameter fixed, B a
constant that sets the pulse to zero at t = 0 and t = tg,
and A a parameter that must be optimized so that the
pulses implement the right amount of 0-1 rotation. This
is performed here by the secant method. Figure A.1 in
the Appendix shows the optimization results for A, and
figure A.2 in the appendix provides an example of DRAG
population evolution.
EG and ET [11] are Gaussian and tangential contours,

whereas ESP is a sine-plateau function that ascends and
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FIG. 2: Populations as function of gate time for different
pulse profiles. Solid lines: envelopes Ω shaped as in (12) and
Φ = 0. Dashed lines: pulses prepared according to the DRAG
protocol with Ex shaped as in Eq. (12). 1 − P1 practically
coincides with P0, as a sign of good performance avoiding
population in level 2.

descends in a time σ ≤ tg/2, but stays constant in be-
tween. The DRAG protocol can be tested by producing
a pulse shape by means of Eq. (10) and (11), after having
set Ex equal to any of the probe contours above.

Figure 2 shows that in all cases the amount of |0〉 pop-
ulation on gate termination is slightly reduced by the
DRAG protocol, but even more significant is the reduc-
tion of the |2〉 population, which can be by a factor of
up to 104. In the case of qutrit control this has an ob-
vious application to perform a 0-1 rotation to prepare
either the state |1〉 or a superposition of |0〉 and |1〉, re-
maining in the qutrit subspace. This would be achieved
by optimizing A so that the right amount of rotation is
implemented.

B. STIRAP protocol

Stimulated Raman Adiabatic Passage (STIRAP) is a
technique widely used in quantum technologies [13, 14]
that has been proved effective in quantum computation
[15, 16]. It consists in the application of two pulses with
envelopes Ω1 and Ω2 in resonance with the 0-1 and 1-2
transitions, respectively. The Hamiltonian whose inter-
action term HI considers exclusively the coupling of each
pulse with the transition with which it is resonant,

HI = ~
∑
i=0,1

gi,i+1Ωi,i+1(t) cos(ωi,i+1t)Πi,i+1, (13)

has the dark state |D〉 = cos Θ |0〉 − sin Θ |2〉 as a zero-
eigenvalue eigenstate, with tan Θ ≡ Ω01(t)/Ω12(t) [15].
By letting tan Θ go from zero to infinity throughout the

gate, a transfer of population between the |0〉 and |2〉
states occurs. This can be done through Gaussian pulses,
separated by a time ts:

Ωi,i+1(t) = A exp

[
(t− µi,i+1)2

2σ2

]
, µ12 = µ01 − ts, (14)

where µ12 and µ01 denote the pulse centers and the am-
plitude A and the standard deviation σ are taken to be
equal in both pulses. The counter-intuitive sequence, i.e.
the application of the resonant 1-2 pulse in the first place
and then the resonant 0-1 pulse (ts > 0), leads to remark-
able results [15–17]. The tuning is at all times undertaken
slowly and if the global adiabatic condition [18],

√
2Ats � 1, (15)

is fulfilled, no instantaneous |1〉 population will exist in
the system in the course of the gate.

Nonetheless, in our particular scenario for the 4-level
system, for consistency with the formalism presented,
two interaction Hamiltonian terms HI,k (k = 0, 1) are
considered, where the two pulses interact non-resonantly
with all the transitions:

HI,k = ~
3∑

i<j

gijΩk,k+1(t) cosaij (ωk,k+1t)Πij . (16)

In the case of independent couplings, the adiabatic
condition (15) can be fulfilled by freely increasing the
amplitude A. However, in the non-resonant interaction
frame, failing to keep A small enough would result into
an intensification of this non-resonant effect, provoking a
rapid oscillation in the populations, as seen in figure A.3.

FIG. 3: Final population of the |2〉 state at STIRAP protocol
termination for different σ and ts, with amplitudes A = 2π×
20 MHz and 2π×40 MHz (top), 2π×80 MHz and 2π×150 MHz
(bottom). Oblique lines with gate times (ns) tg = ts+6σ have
been included for reference.

A compromise is achieved by letting A be small enough
so that Eq. (16) can be approximated by (13), but large
enough so that the condition (15) is fulfilled with times
that are short enough so as not to observe decoherence.
Final P2 for varying parameters are shown in figure 3.
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C. Pulse sequence

A straightforward approach to prepare a specific rota-
tion is to implement a pulse sequence. A first pulse of
length t1, resonant with the 0-1 rotation, prepares the
population of the |0〉 state to the desired value. After-
wards, a pulse of length t2, being resonant with the 1-2
rotation, adjusts the ratio P1/P2.

FIG. 4: 1 − P2 at gate termination. Comparison of pulse
sequence and STIRAP. Top: pulse sequence of tg = t1 + t2,
where the first pulse is Gaussian-DRAG with t1/σ = 2 and
the second one is Gaussian with t2/σ = 2. The amplitudes
are the ones that minimize P0 in the DRAG pulse (figure
A.1) and maximize P2 in the second pulse. Bottom: STIRAP
protocol at A = 2π × 20 MHz (left) and A = 2π × 40 MHz
(right). tg (ns) lines are shown for reference.

Figure 4 presents the results when the goal is the state
|2〉. It can be seen there how the |2〉 population can be
refined by enlarging the gate time t1 of a first DRAG
gate, and the gate time t2 of a second Gaussian pulse.
The comparison with the STIRAP simulated in the non-
resonant frame shows how a pulse sequence is able to give
similar results in smaller gate times.

IV. EFFECTIVE CHIRP PULSE

In the last section, we explore the effect of an effective
time-dependent frequency ωeff controlled by the phase
Φ(t). The cosine argument of equation (6) is then:

ωdt+ Φ(t) ≡ ωeff(t)t; Φ(t) = (ωeff(t)− ωd) t (17)

Knowing this, an effective frequency ωeff is suggested,
such that two differentiated phase regions come into play,
where in each one only a single transition is resonantly
excited—first the 0-1 and then the 1-2:

ωeff(t) =
ω12 − ω01

2
tanh

(
t− µ
σ

)
+
ω12 + ω01

2
, (18)

where µ and σ are parameters to optimize that account
for the position and width of the region transit. Thus,
ωeff(t� µ) = ω01 and ωeff(t� µ) = ω12.

An envelope Ω(t) is also needed. Similarly, two regions
are considered, now with three region transits, since it
must begin and end at Ω(0) = Ω(tg) = 0:

Ω(t) =

3∑
i=1

Ci tanh

(
t−Mi

Σi

)
, (19)

with C1 = Ω1/2, C2 = (Ω2 − Ω1)/2 and C3 = −Ω2/2,
where Ω1,2 are the pulse amplitudes at the 1st and 2nd

regions. Mi and Σi are the position and width of the
region transits.

All transit widths are set to σ = Σi = 1.2 ns, and the
envelope starts and is cut off at |t−Mi| = 3Σi, establish-
ing M1 = 3Σ and M3 = tg − 3Σ. Parameters Ω1, Ω2, µ
and M2 are then optimized through the minimization of
a cost function f by means of the Powell algorithm [19].

f =
1

3

2∑
i=0

|P ∗i − 〈ΨE |Πi|ΨE〉| , (20)

where P ∗i denotes the target i-th state population and
|ΨE〉 denotes the system wave function after a pulse with
Ω and Φ constructed as explained above, with ωd = ω01.

The robustness of the gate 1−∆ is measured using:

1−∆ = 1−
√∑

i=1,2

[
(f+

i − f∗)2 + (f−i − f∗)2
]

(21)

where f∗ denotes the minimum value obtained for the
cost function and f±i is the value of the cost function
computed with the parameters that minimize it, except
for Ωi, whose value is Ωi± δΩi. δΩi/Ωi = 5% to emulate
a slight deviation of the amplitudes during the evolution.

tg (ns) P ∗
0 P ∗

1 P ∗
2 1− f∗ 1−∆ Maximum P3

20 1/3 1/3 1/3 0.99800 0.961 1.98× 10−2

18 1/2 1/4 1/4 0.99481 0.976 2.32× 10−2

16 1/10 4/5 1/10 0.99809 0.988 1.02× 10−2

20 3/10 0 7/10 0.99502 0.977 6.21× 10−2

30

1/3 1/3 1/3 0.99994 0.952 2.30× 10−3

1/2 1/4 1/4 0.99998 0.959 1.38× 10−3

1/10 4/5 1/10 0.99984 0.969 7.81× 10−4

3/10 0 7/10 0.99997 0.959 1.21× 10−3

TABLE I: Optimization results for various target populations,
with tg of 30 ns and the lowest possible for each case.

Table I shows the results of the optimizations for var-
ious target populations. Their evolutions are shown in
figures A.6 and A.7. 1 − f∗ is used as a fidelity marker,
and acceptable results are obtained: up to 99.998% for a
tg of 30 ns, and above 99.4% for the lowest tg obtained
for each case (16 to 20 ns). If the target |2〉-state pop-
ulation is non-null, high Ω1 are allowed since although
non-resonant 1-2 rotation occurs in the first region, this
is later corrected with the Ω2 value.

These gate times, of course, must meet the experimen-
tal requirements of pulse generator time step and low-
pass filtering, resulting from a potential opaqueness of
certain electronic components to high frequencies.
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V. CONCLUSIONS

Several techniques to induce specific qutrit popula-
tions in a superconducting transmon device have been
discussed. They have at all times been achieved within
gate times short enough so as not to consider decoher-
ence, whose characteristic times are two to three orders
of magnitude greater than the gate times used.

First, the DRAG technique has been introduced, which
has shown to be able purify the preparation of the |1〉
state. This technique reduces the population of the |2〉
state by a factor of 102 to 104. This allows for the usage
of the qutrit as a qubit when required.

Next, the STIRAP protocol has been discussed to pre-
pare the |2〉 state, accompanied by a critical analysis of
the case when the experimental setting requires the non-
resonant coupling of the pulses with all transitions. A
comparison with a slow pulse sequence has showed that
preparing the system by parts yields equally good and
faster results than the STIRAP protocol under the afore-
mentioned restriction. Via a pulse sequence, a state |2〉
population of over 0.998 can be prepared in 60 ns.

Finally, a new effective-chirp pulse technique is sug-
gested. By means of it, arbitrary qutrit populations can
be reached in very short gate times –16 to 20 ns– with

acceptable fidelity (up to 99.8%) and robustness. Thus,
one may saturate the experimental possibilities of pulse
generator time mesh and electronic opaqueness to high
frequencies to freely populate the qutrit states.

Further work could be oriented towards the extension
of the protocol such that it incorporates the ability to
control the relative phases of the qutrit states. In that
case, a true quantum gate that performed arbitrary ro-
tations in the qutrit space would be designed.
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versitat Politècnica de Catalunya (2019).

[21] They are strictly forbidden in the harmonic oscillator [9],
but still heavily unprivileged in the transmon modified
energy levels.

Degree Project 5 Barcelona, June 2020



Dynamical control techniques to generate qutrit populations in transmons Ivan Alsina Ferrer

VI. APPENDIX

A. Device parameters

Parameter Value
0-1 transition frequency (ω01) 2π × 4.89 GHz
1-2 transition frequency (ω12) 2π × 4.58 GHz
0-2 transition frequency (ω02/2) 2π × 4.74 GHz
0-3 transition frequency (ω03) 2π × 13.75 GHz
1-3 transition frequency (ω13/2) 2π × 4.43 GHz
2-3 transition frequency (ω23) 2π × 4.28 GHz
Anharmonicity (α) −2π × 306 MHz
Relative anharmonicity (αr) −6.25× 10−2

Charing energy (EC/~) 2π × 306 MHz
Josephson energy (EJ/~) 2π × 11.04 GHz

TABLE A.I: Experimental parameters of the transmon de-
vice [20] (updated). 0-1 and 1-2 transition frequencies were
measured whereas the rest of parameters were computed us-
ing Eqs. (2) and (1). Notice that the two-photon processes
are modelled with a frequency that corresponds to half the
energy difference between levels. Relative anharmonicity is
computed as αr = α/ω01.

B. Optimization results
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FIG. A.1: Optimal A-parameters of Eq. (12) to performe a
π-pulse and prepare state |1〉 for both DRAG and non-DRAG
sequences, since both values practically coincide.

tg (ns) P ∗
0 P ∗

1 P ∗
2

Ω1/2π
(MHz)

Ω2/2π
(MHz)

µ (ns) M2 (ns)

20 1/3 1/3 1/3 71.305 70.620 12.472 12.938
18 1/2 1/4 1/4 74.463 9.023 9.023 8.957
16 1/10 4/5 1/10 103.439 10.929 10.929 7.150
20 3/10 0 7/10 114.933 9.787 8.787 6.864

30

1/3 1/3 1/3 34.193 21.535 15.000 14.877
1/2 1/4 1/4 27.196 21.268 15.000 15.001
1/10 4/5 1/10 32.367 10.988 18.760 18.674
3/10 0 7/10 35.440 41.510 15.102 15.482

TABLE A.II: Optimal parameters found for the results pre-
sented in table I and figures A.6 and A.7.

C. Population evolutions
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FIG. A.2: Population evolution in the preparation of the |1〉
state via the DRAG protocol with tg = 30 ns, σ = tg/6. Pulse
envelope and phase are shown, along with the population of
each of the states, in linear and logarithmic plots.
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FIG. A.3: Pulses and populations evolution in the preparation
of the |2〉 state via the STIRAP protocol. Top: A = 2π ×
20 MHz, σ = 16 ns, ts = 5 ns. Bottom: A = 2π × 40 MHz,
σ = 15 ns, ts = 18 ns. The envelopes are scaled by a factor so
A = g01Ω01(µ01) = g12Ω12(µ12): see Eqs. (16) and (14).
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FIG. A.4: Maximum population of the |1〉 and |3〉 states dur-
ing the STIRAP protocol with amplitudes A = 2π × 20 MHz
and 2π×40 MHz (top), 2π×80 MHz and 2π×150 MHz (bot-
tom). Oblique lines with gate times (ns) tg = ts + 6σ have
been included for reference.

FIG. A.5: Evolution of the population in the |0〉, |1〉 and
|2〉 states throughout the STIRAP protocol for varying sep-
arations. Top to bottom: A = 2π × 20 MHz, σ = 16 ns;
A = 2π × 40 MHz, σ = 14 ns; A = 2π × 80 MHz, σ = 12 ns;
and A = 2π × 150 MHz, σ = 12 ns.

Figure A.2 shows the system evolution in the prepara-
tion of the |1〉-state via a 30 ns DRAG gate with σ = tg/6.

Figure A.3 shows the system evolution in the prepa-
ration of the |2〉-state via the STIRAP protocol with
A = 2π × 20 MHz and A = 2π × 40 MHz. The qual-
ity of the state |2〉 achieved is better in the case of
the lower-magnitude pulse than for the higher-magnitude
one: 99.94% vs. 98.50%. This is due to the fact that a
lower Rabi frequency reduces the non-resonant effect.

On the other hand, as discussed in section III B, since
the adiabatic condition (15) is better fulfilled for higher-
magnitude pulses, the maximum P1 along the gate is
lower in the stronger pulse: 16% vs 43%. This becomes
especially relevant when this technique is intended to pre-
pare a superposition of the |0〉 and the |2〉 pulses. This
is also reflected in figure A.4a. Below, figure A.4b shows
how greater Rabi frequencies result in a relevant leakage
to the |3〉 state, making them unacceptable.

Figure A.5 shows the evolution of the qutrit popula-
tions under the STIRAP protocol for increasing Rabi fre-
quencies. It can be seen that, for intense pulses, the
out-of-resonance effect produces undesirable rapid oscil-
lations during the transition to the |2〉 state.

Finally, figures A.6 and A.7 show the system evo-
lution in the preparation of various target states,
namely (P ∗0 , P

∗
1 , P

∗
2 ) = (1/3, 1/3, 1/3), (1/2, 1/4, 1/4),

(1/10, 4/5, 1/10) and (3/10, 0, 7/10), with the effective-
chirp protocol. The pulse parameters are given in table
A.II, and the results in table I. The 30 ns gate yields
very good results, but shorter gate times are also possi-
ble. The shortest it is possible to achieve before losing
fidelity depends on the target populations nature.

Since (1/10, 4/5, 1/10) resembles a 0-1 transition, it
can be produced in shorter gate times –16 ns–. The still
little amount of |2〉-state population in (1/2, 1/4, 1/4) en-
ables this set of populations to be prepared in 18 ns. How-
ever, the 1-2 rotation must be undertaken more carefully
since, as table A.I shows, undesired transitions to the
|3〉 state are close to ω12. Consequently, the fact that
(1/3, 1/3, 1/3) and (3/10, 0, 7/10) require more 1-2 rota-
tion demands slightly longer gate times: 20 ns.
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FIG. A.6: Evolution of the populations for the chirp prepara-
tion of the final state with different target populations in the
lowest time possible for each.
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FIG. A.7: Evolution of the populations for the chirp prepa-
ration of the final state with different target populations in
30 ns.
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