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Advisors: David López-Núñez and Sofyan Iblisdir

Abstract: In this work, we study how we can simulate the quantum sine-Gordon (qSG) model
using superconducting quantum circuits. We describe our circuit configuration and demonstrate
why it reproduces the qSG and how to simulate it. Our final result is the comparison between
the simulated energy spectrum of the circuit and the lightest breather state energy, which are
expected to map to each other in the continuum limit. We find a reasonable agreement between
our simulations and the exact result, even though we were limited by different reasons. Finally, we
propose a roadmap to improve the results.

I. INTRODUCTION

In the context of quantum mechanics, it is common to
struggle to simulate problems of a simple nature on a clas-
sical computer. Using a quantum system to investigate
quantum problems seems to be a reasonable approach,
since it can faithfully describe the quantum degrees of
freedom. A possible method is quantum simulation, that
consists on mimicking a quantum system with another
that is easier to manipulate [1]. Quantum simulations
are usually divided into digital and analog simulations.
In the latter one, the Hamiltonian of the new system tries
to be as close as possible as to the original one. There
are different possible technologies to implement analog
quantum simulations, for instance trapped ions, ultracold
atoms or superconducting circuits [2]. In contrast to the
other approaches, superconducting circuits are manufac-
tured, hence most parameters are not given by nature but
designed by humans, which provides more control over
the system parameters and leads to more possibilities of
optimization. On the other hand, as superconducting
circuits are macroscopic systems, they are more suscep-
tible to noise, which introduce errors on the simulations;
and despite having more control on the circuit parame-
ters, its reproducibility can still be improved. However,
superconducting circuits have proven already to be one
of the most promising platforms for performing quantum
information science, being currently the leading platform
in quantum computation [3].

Quantum field theories (QFTs) are among the most
successful descriptions of the physical world, which were
initially developed to unify quantum mechanics and spe-
cial relativity. Carrying out exact computations using
QFTs is notoriously hard. However, perturbative calcu-
lations in the form of Feynman diagrams have yielded re-
markably accurate results. When a perturbative expan-
sion is not possible, one is usually forced to use (often)
heavy numerical simulations. While remarkable progress
has been achieved in analyzing QFTs using numerical
or effective field theory methods [4], many quantities of
interest remain elusive, either due to the computational
limitations or due to the lack of an effective theory.

In this work, we use the know capabilities of super-

conducting circuit to study QFT[5, 6]. In particular, we
study a proposed [7] superconducting circuit to investi-
gate one of the paradigmatic integrable QFT models: the
quantum sine-Gordon (qSG) model in 1+1 space-time di-
mensions, which is of great interest because one can ob-
tain exact analytical results even in the non-perturbative
regime, which makes it an excellent toy laboratory model
for more complicated QFTs. It is important to remark
that, even though the investigation of this model is of
great interest for a lot of Quantum Field theorists, it has
never been implemented experimentally. This work rep-
resents a starting point to the study of qSG-like models
using superconducting quantum simulators that may be
extended in the future with actual experimental imple-
mentations.

The article is organized as follows. In Sec. II, we sum-
marize two relevant topics in this work, superconducting
circuits, and the sine-Gordon model. In Sec. III, we take
a look at the circuit and the methods used in this work,
from the circuit analysis to the simulation. In Sec. III D,
we provide some analytical results and the identification
of the first breather in our energy plot. In Sec. V, we
talk about the conclusions and open the discussion for
future modifications and objectives.

II. THEORY BACKGROUND

A. Superconducting Circuits

Superconductivity is a property of matter that is ob-
served at low temperatures. Below a certain critical tem-
perature, some materials become superconducting, which
is characterized by two basic properties: firstly, they of-
fer no resistance to the passage of electrical current thus
allowing current to flow inside the material without en-
ergy dissipation. Secondly, they actively exclude mag-
netic fields from its interior, which is known as the Meiss-
ner effect. These properties were modeled successfully by
the BCS theory [8].

In order to build and control superconducting circuits
in the quantum regime, one relies basically on three el-
ements: capacitors, inductors, and Josephson junctions
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(JJ). The capacitor is an element that stores energy in
an electric field and the inductor is a coil which stores
energy in the magnetic field. The I-V characteristics for
these two elements are,

iC(t) = C
dv

dt
, vL(t) =

dφ

dt
= L

di

dt
, (1)

where φ = Li is the magnetic flux, C and L are the ca-
pacitance and inductance respectively. Both inductors
and capacitors are linear. In order to control the degrees
of freedom of a superconducting circuit in the quantum
regime, however, nonlinear elements are needed. Joseph-
son junction provide this nonlinearity together with be-
ing disipationless thanks to superconductivity. Joseph-
son junctions are formed by separating two supercon-
ducting electrodes with an insulator thin enough so that
the macroscopic wave function of the superconductor on
each side of the barrier tunnels through it. It has been
shown [8] that JJ has the I-V characteristics,

I = I0 sin(ϕ), V =
Φ0

2π
ϕ̇, (2)

where Φ0 = h/2e is the superconducting flux quantum,
I0 is the critical current above which the JJ becomes
dissipative, ϕ = θ1 − θ2 and V are respectively gauge-
invariant superconducting phase and voltage across the
junction. A JJ also has some intrinsic capacitance that
must be taken into account.

Superconducting circuits obey quantum mechanical
laws, but their degrees of freedom follow the standard
laws of electric circuits. The quantum description of an
electrical circuit is obtained through circuit quantization.
In order to do so, it is convenient to express the current
flowing through each element of the circuit in terms of
an associated local magnetic flux, Φ. At each node, Kir-
choff relation for incoming and outgoing currents can be
applied as in standard circuits:∑

Iin =
∑

Iout. (3)

Using Eqs. 1-2, Eq. 3 constitutes the equation of motion
for each independent flux variable in the circuit. These
equations can also be derived through

d

dt

(
∂L
∂Φ̇i

)
=

∂L
∂Φi

. (4)

Then, the lagrangian of the system is obtained by inte-
gration. The conjugate moment is defined as,

qi =
∂L
∂Φ̇i

(5)

Finally, using the Legendre transformation

H =
∑
i

qiΦ̇i − L, (6)

the final Hamiltonian of our superconducting circuit is
obtained. The final step towards quantizing the circuits

consists on promoting the flux and charge variable to
quantum mechanical operators

Φi −→ Φ̂i , qi −→ q̂i, (7)

which, analogously to position and momentum operators,

follow the commutation relations,
[
Φ̂i, q̂j

]
= δiji~. How-

ever, through the rest of the paper, we will omit the hat
for convenience, only using it in necessary derivations.

B. Sine-Gordon model

The sine-Gordon Lagrangian is given by the action

S =
1

2

∫
d2x (∂µφ)

2
+M0

∫
d2x cos(βφ), (8)

where M0 is the mass-parameter of the action. The exci-
tations of any QFT are particles, and, in the qSG model,
these are solitons and breathers. The breathers are
soliton-antisoliton bound states. A more formal deriva-
tion of these excitations can be found in Appendix A.

Soliton mass is given by [9]

M =
2Γ(ξ/2)
√
πΓ
(

1+ξ
2

)
M0πΓ

(
1− β2

8π

)
2Γ
(
β2

8π

)


1

2− β2

4π

, (9)

where ξ = β2

8π−β2 . Contrary to classical sine-Gordon,

there are only a finite number of breather states in the
quantum regime. The mass of the nth breather state is
given by

mn = 2M sin

(
nπξ

2

)
, n = 1, 2, ...,

⌊
1

ξ

⌋
. (10)

Note that the mass of the breather is always less than
twice the soliton mass, as we would expect for a bound
motion of a soliton-antisoliton pair. At small β the light-
est breather is n = 1 and its mass should coincide with
the energy of the first excited state of the system [10].

III. DEVELOPMENT SECTION

A. Circuit

In this work we follow [7] to investigate the qSG with
a certain configuration of superconducting circuit which
is composed of an array of N unit cells, with N tending
to infinity, as seen in FIG. 1. Two neighboring cells are
separated by Josephson junctions with junction energy
EH and charging energy ECH = 2e2/CH . In addition,
each cell is also separated from the ground plane by a
Josephson junction, with junction energy EV and charg-
ing energy ECV = 2e2/CV .

Treball de Fi de Grau 2 Barcelona, June 2021
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CV , EV

CH , EH

FIG. 1: Schematic of the superconducting circuit for
the qSG model. Each Josephson junction is indicated

by a cross with a box around it.

There are two important cases. When EV = 0, then
the Josephson junctions on the vertical perform as simple
capacitances. This case has been analyzed perturbatively
[11] and one can see that it reproduces, in the continuum
limit, the action

S0 =
1

2πK

∫
d2x

[
1

u
(∂tϕ)2 + u(∂xϕ)2

]
, (11)

which is called the Luttinger Liquid action with plasmon
velocity u and Luttinger parameter K. These parameters
in the perturbative approximation, working in the regime
where ECH � ECV , EV � EH , are given by [12]

u ≈ a
√

2ECV EH , K ≈ 1

2π

√
2ECV
EH

, (12)

where a is the lattice spacing of the circuit. In the case
of EV 6= 0, there is an additional term in the action, see
Sec. III C, and properly describes the qSG. This is the
situation in which we are interested in.

B. Circuit Quantization

As mentioned before, circuit quantization is a method
which allows one to obtain the Lagrangian and Hamilto-
nian of a superconducting circuit. First, all nodes should
be identified, one of them should be put as ground, and
from the ground mode, all the nodes must be connected
following one path, forming the spanning tree. Then fol-
lowing the steps described in Sec. III A, The Lagrangian
and Hamiltonian can be obtained. Full derivation for the
example in FIG. 2(a) can be found in Appendix B. In our
case of interest [see FIG. 1], the same analysis is applied
and the result Hamiltonian is given by

H = ECV

L∑
i=1

n2
i + δECV

L−1∑
i=1

nini+1

− EH
L−1∑
i=1

cos(ϕi − ϕi+1)− EV
L∑
i=1

cos(ϕi),

(13)

where ni is the excess number of Cooper pairs on the
ith island and δ is small parameter, δ < 1. The third

CV , EV

CH , EH

(a) Josephson junction

CV , EV

L

(b) Inductance

FIG. 2: Circuit configuration used in this work (a) and
future implementation (b).

term, which appears due to the Josephson junctions in
the horizontal link, can be approximated to its Taylor
expansion if EH is sufficiently small, cos(ϕi − ϕi+1) ≈
1− (ϕi−ϕi+1)2/2, which is convenient for the qSF simu-
lation. Computationally, it is easier to simulate our sys-
tem using the cosine, as will be explained in Sec. IIID.
However, it is experimentally possible to have a large
inductance without the need of Josephson junction [see
FIG. 2(b)] by using granular aluminum [13], which is a
high kinetic inductance material. Then, it allow us to
avoid the limitation in the regime EH � ECV , and then

this term is rewritten as: EL
∑L−1
i=1 (ϕi − ϕi+1)

2
.

C. Lagrangian to Action

In order to transition from a set of discrete generalized
coordinates qn, into a continuous field coordinate φ(x)
we follow the steps explained in [14]. As stated in the
previous section, we work in the regime of small EH and
will consider δ = 0 for simplicity. Then, Lagrangian can
be written as a linear part L0 and the interaction part,
Lint, with the remaining cosinus term. By taking the
continuous limit and using S =

∫
dtL we arrive at

S =

∫
d2x

[
1

2ECV a
(∂tφ)2 + aEH(∂xφ)2

]
+ EV

∫
d2x cos(φ).

(14)

Full derivation can be found in Appendix C. If we com-
pare this final expression with Eq. (11), where φ = βϕ,
one can easily see the connections in Eq. (12). Further-
more, the qSG coupling and the mass-parameter of the
action, in units of a = 1, are β =

√
πK and M0 = EV

respectively.

D. Numerical Simulation

We have followed an exact diagonalization of the
Hamiltonian in order to obtain the eigenenergies and
eigenstates of the system. Since no inductance is con-
sidered, it is convenient to choose the charge basis as the

Treball de Fi de Grau 3 Barcelona, June 2021
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FIG. 3: Variation of En, which is the energy of the nth

breather, and is defined as En = mnu
2, being mn the

nth breather mass and u the plasmon velocity, with the
variation of the Luttinger parameter, K. (EV = 0.01)

basis in which we define our states. This is computation-
ally convenient because the capacitive terms, which de-
pend on n2

i and ninj , are diagonal, and the Josepshson
junction terms are represented in the upper and lower
diagonals, then most elements of the matrix are zero.
For computing the Josephson terms one has to note that
cosϕ = (eiϕ + e−iϕ)/2. Then we can use the following
relation, e±iϕ̂|n〉 = |n ∓ 1〉. So the effect of a Josephson
junction terms over a charge state |n〉, is

cos ϕ̂|n〉 =
1

2
(|n+ 1〉+ |n− 1〉). (15)

In case we introduce an inductance, we would need to
change our basis to the harmonic basis, composed of an
inductance and capacitance, and the matrix representa-
tion of the cosine would be much more difficult to com-
pute. One could also change the Hamiltonian represen-
tation into the phase basis and numerically integrate the
Schrodinger equation, which may be convenient for linear
inductors. We have kept the Josephson junctions during
the simulation, however in the experiment, as mentioned
before, it would be better to use an inductance [see FIG.
2(b)]. Finally, using a python library called scipy.sparse
library we are able to perform an exact diagonalization,
hence obtaining the energy spectrum.

IV. RESULTS

First, we present the breathers’ energy in FIG 3.
We observe that for the whole range of K the light-
est breather corresponds to the first breather, n = 1,
and as K increases, the heavier breathers disappear. For
K < 4 there exist breather states because the interaction
is attractive [15], thus the solitons and anitsolitons form
bound states. For K > 4 this interaction becomes repul-
sive, therefore no bound states are formed. In the limit
K → 0, n increases, recovering the classic limit where we
have a continuum number of breather states.
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FIG. 4: (a) Variation of the energy with the variation of
K, using different values for the parameter δ. (b)

Variation of the first breather energy with the variation
of K, using different values for EV . (c) Comparison

between the energy spectrum of our circuit with
different number of cells and the variation of the first

breather energy, with the K variation.

We did some prior tests in order to check our simula-
tions were correct. We simulated the flux qubit, and com-
pared the energy spectrum with the results in [16]. We
also checked which is the maximum number of charges
needed for the solution to converge, which is an impor-
tant parameter for our simulations, because the number
of states is N = (2nmax + 1)L, where L is the number of
cells, and so the matrix N × N , and the computational
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costs scale quickly increasing nmax. As can be seen in
FIG. 4(a), we show that, for small δ, we can neglect its
effect as simulations are unaffected by its value.

Then, we present some simulations for different EV ,
which corresponds to different M0. We have access to the
full range of parameters space. However, as mentioned
in Sec. III C, simulations using the Josephson Junctions
instead of inductances in the horizontal link is only valid
in the regime where EH � ECV , which corresponds to
K � 1.

In FIG. 4(c), we compare the results of the breather
energy with our superconducting circuit model for dif-
ferent number of array cells, limiting the comparison to
the regime of small K. The energy of the simulated first
excited state and the energy of the first breather should
map to each other. The first breather energy is con-
siderably close taking into account that the simulations
are far from the continuum limit. As we increase the
number of cells, the simulation consistently approach the
breather energy, which gives hope that in the limit with
infinite cells it will get closer. Notice that 6 array cells
is the maximum number of cells we can simulate using
a conventional laptop with 2 cores and 8 GB of RAM.
Discrepancy is expected as perturbative definition of K
and u are known to be not ideal, producing an offset that
could be comparable to what is seen in the simulations.

V. CONCLUSIONS AND FUTURE WORLD

In this work, we have studied the validity of our su-
perconducting quantum circuit configuration [see FIG.
1] of reproducing the qSG model, from the mathematical
derivations to the computational simulation. We have
analyzed the simplest viable experimental implementa-
tion that could be performed, which consists on measur-
ing the first excitation of the array which should corre-
spond to the energy of the first breather state of the qSG.
Despite our results don’t match perfectly with the exact

solutions, this is expectable for at least two reasons: the
perturbative approximation of the qSG parameters pro-
duces an offset variation [7], and the solutions correspond
to the continuum limit which is far from our simulations.

Since this work is a starting point for understanding
this kind of systems, we propose different improvements
that can be implemented in the future. First, instead of
working with the perturbative approximations, one can
use the density matrix renormalization group (DMRG)
technique which has been proved in [7] that improves the
results. Another way of improving the results would be
to perform these simulations on a bigger machine, such
as the computers at PIC Port d’Informació Cient́ıfica)
or BSC (Barcelona Supercomputing Centre). Then, as
mentioned in Sec. III B it is experimentally possible to
have large inductance by using granular aluminum, so,
changing the horizontal Josephson junctions for an in-
ductance will allow to get better results with higher K.
as we will not be restricted to K � 1. Finally, this work
is intended to be continued with an experimental realiza-
tion that could overcome most of the issues faced during
the simulations. Large arrays of junctions have already
been successfully implemented and granular aluminum
has shown to provide the large inductances needed in
this work. Then, fabricating an array with the proper
design parameters should allow testing the results in a
limit much closer to the continuum and without the lim-
itation of using junctions in the horizontal array.
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Appendix A: Quantum Sine-Gordon excitations

The sine-Gordon Lagrangian is given by [15]

L =
1

2
(∂µφ)2 − α

β2
(1− cosβφ). (A1)

In 1+1 spacetime dimensions, the field φ is dimensionless,
β is also dimensionless and α has units of mass squared.
For Lagrangians with a single scalar field, the (classical)
equation of motion is given by the Euler-Lagrange equa-
tion

∂µ

(
∂L

∂(∂µφ

)
=
∂L

∂φ
. (A2)

In our case, ∂L
∂(∂µφ) = ∂µφ and ∂L

∂φ = −αβ sin(βφ), so we

have the equation

∂µ∂
µφ+

α

β
sin(βφ) = 0, (A3)

where ∂µ∂
µφ = ∂2

t φ−∂2
xφ. Kinks and breathers are solu-

tions to this equation of motion. The kink and antikink
solutions are given by [15]

φk =
4

β
tan−1(e

√
αx) (A4)

φk =
4

β
tan−1(e−

√
αx) (A5)

Breathers are bound states of a soliton and an antisoliton:

φb(t, x) =
4

β
tan−1

[
η sin(wt)

cosh(ηwx)

]
, (A6)

where η =
√
α− w2/w and ω is a continuos parameter

0 < w <
√
α.

Appendix B: Circuit quantization

Following the steps described in Sec. IIIB, we do the
exact circuit quantization for FIG. 5.

1. First, all the nodes should be identified. Then,
one of them should be set as ground. This is the same as
choosing a zero in the energy or in a coordinate system.
An arbitrary direction of the current in every branch has
to be chosen and one has to be consisten with that choice.

2. We must obtain two movement equations for
each of the two actives nodes: A and B. We will use the
Kirchhoff law

∑
Iin =

∑
Iout and the relations of the

current for the JJ:

Node A:∑
Iin = CV (φ̈A − φ̈G) + IV sin(

2π

Φ0
(φA − φG)) (B1)

∑
Iout = CH(φ̈B − φ̈A) + IH sin(

2π

Φ0
(φB − φA)) (B2)

Where we have defined φ̈G = φG = 0. Now, matching
both equations, we reorganize the terms as follows:

φ̈A(CV + CH)− φ̈BCH =IH sin(
2ı

Φ0
(φB − φA))

− IV sin(
2π

Φ0
φA)

(B3)

Node B:∑
Iin = CH(φ̈B − φ̈A) + IH sin(

2π

Φ0
(φB − φA)) (B4)

∑
Iout = CV (φ̈G − φ̈B) + IV sin(

2π

Φ0
(φG − φB)) (B5)

Combining both and reorganizing the terms we arrive to
the movement equation for node B:

−CH φ̈A + φ̈B(CH + CV ) =− IV sin(
2π

Φ0
φB)

− IH sin(
2π

Φ0
(φB − φA))

(B6)

3. The next step is finding the Lagrangian integrating
the two movement equations, knowing that

d

dt

(
∂L
∂Φ̇i

)
=

∂L
∂Φi

(B7)

Then we will obtain the dependence of the Lagrangian
on each of the variables. Integrating equation (B3) on
both sides, we obtain

LA =
φ̇2
A

2
(CV + CH)− φ̇Bφ̇ACH

+ EH cos(
2π

Φ0
(φB − φA)) + EV cos(

2π

Φ0
φA)

(B8)

Using now equation (B6)

LB =− φ̇Aφ̇BCH +
φ̇2
B

2
(CV + CH)

+ EV cos(
2π

Φ0
φB) + EH cos(

2π

Φ0
(φB − φA))

(B9)

Combining all terms the total Lagrangian results in

L =
CV + CH

2
(φ̇2
A + φ̇2

B)− 2CH ˙phiAφ̇B

+ EV [cos(
2π

Φ0
φA) + cos(

2π

Φ0
φB)]

+ 2EH cos(
2π

Φ0
(φB − φA))

(B10)
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CH , EH

• B•A

•
G

FIG. 5: 3 Josephson junction circuit, with nodes
identified and the direction of the current for each

branch chosen.

It is more useful to write it in terms of the phase vari-
able instead of charge variable, ϕi = 2π

Φ0
φi.

L =
CV + CH

2

(
Φ0

2π

)2

(ϕ̇2
A + ϕ̇2

B)

− 2CH

(
Φ0

2π

)2

ϕ̇Aϕ̇B

+ EV [cos(ϕA) + cos(ϕB)]

+ 2EH cos(ϕB − ϕA))

(B11)

There is even another convenient mass definition:

mA = mB = (CV + CH)

(
Φ0

2π

)2

mC = 2CH

(
Φ0

2π

)2
(B12)

With all these new definitions one arrives at the following
expression of the Lagrangian

L =
1

2
mA(ϕ̇2

A + ϕ̇2
B)−mC ϕ̇Aϕ̇B

+ EV [cos(ϕA) + cos(ϕB)]

+ 2EH cos(ϕB − ϕA))

(B13)

The generalized momentum, pi = ∂L
∂ϕ̇i

, is now easier to

compute and one find the following matrix relation(
pA
pB

)
=

(
mA mC

−mC mA

)(
ϕ̇A
ϕ̇B

)
= M

(
ϕ̇A
ϕ̇B

)
(B14)

4. The final step is finding the Hamiltonian using
the Legendre transformation, H =

∑
i piϕ̇i − L which

can be written as:

H =
1

2
−→p TM−1−→p + U (B15)

Thanks to python library simpy, one can get the exact

expression of the Hamiltonian

H =

(
2π

Φ0

)2
CV + CH

C2
V + 2CV CH − 3C2

H)
(p2
A + p2

B)

+

(
2π

Φ0

)2
2CH

C2
V + 2CV CH − 3C2

H)
pApB

− EV [cos(ϕA) + cos(ϕB)]

− 2EH cos(ϕB − ϕA))

(B16)

In the regime we are working, CV H , and using the rela-

tionS ni = 2π
Φ0

pi
2e , ECV = 2e2

CV
and δ = 4CH

CV
we can define

the Hamiltonian

H =ECV (n2
A + n2

B) + δECV nAnB

− EV [cos(ϕA) + cos(ϕB)]

− 2EH cos(ϕB − ϕA))

(B17)

If we extend this calculation to a N-array system, then,
the Hamiltonian describing the array is given by:

Harray =ECV

L∑
i=1

n2
i + δECV

L−1∑
i=1

nini+1

EH

L−1∑
i=1

cos(ϕi − ϕi+1)− EV
L∑
i=1

cosϕi

(B18)

The last step is to promote the operators to quantum
mechanical operators,

ϕi −→ ϕ̂i , ni −→ n̂i. (B19)

Appendix C: Quantum sine-Gordon lagrangian to
action transformation

1. We work in the regime where EHCV , so, we rewrite
the Lagrangian with the approximations mentioned
in Sec. IIIB and assume δ = 0 for simplicity, we
have L = L0 + Lint, where

L0 =
1

2ECV

L∑
i=1

a
ϕ̇i

2

a

+ EH

L−1∑
i=1

a2

(
ϕi − ϕi+1

a

)2

Lint = EV

L∑
i=1

cos(ϕi).

(C1)

2. We apply the following limits which describes how
the relevant quantities change as the separation be-
tween the equally spaced coordinates go to zero and
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the discret system becomes continuos:

lim
a→0

(
L∑
i=1

a

)
=

∫
dx

lim
a→0

qn = Φ(x)

lim
a→0

(
qi − qi−1

a

)
=
∂Φ

∂x
.

(C2)

3. The Euclidean action of our system is given by S =
S0 + Sint, where

S0 =

∫
dtL0

=

∫
d2x

[
1

2ECV a
(∂tΦ)2 + aEH(∂xΦ)2

]
Sint = EV

∫
d2xcos(Φ).

(C3)
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