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Abstract
In this thesis we have studied from a numerical point of view the system consisting
of a flux qubit galvanically coupled to an LC oscillator in the ultrastrong coupling
regime. We demonstrate for the 3 Josephson Junction with inductance flux qubit
that this regime can be achieveble with the designed parameters. Parallely, it is also
demonstrated that this regime can be obtained experimentally with aluminum thin
wires, and its calibration is performed.
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Chapter 1

Introduction and Objectives

1.1 Introduction

This thesis aims to explore the ultrastrong coupling regime (USC) of light-matter
interaction, using galvanic contacts in tandem with superconducting quantum bits.
These are obtained with superconducting quantum circuits, which, with only simple
building blocks, allow the design of chips with different properties and purposes.

The number of applications is unfathomable in the broader field of supercon-
ducting quantum qubits. For instance, in the past few years, the interest in this
technology has grown and companies such as Google [1], IBM [2], or many oth-
ers have used it to build quantum computers. However, superconducting quantum
circuits (SQCs) are not only useful for building quantum computers. The integra-
tion of superconducting qubits has opened doors to new frontiers of exploration
in quantum computing [3], quantum communication [4], and quantum simulation
[5]. These qubits serve as the building blocks for innovative technologies, driving
progress in fields as diverse as optimization problems, cryptography, and material
science simulations.

As previously mentioned, we are interested in studying the USC because the
applications of this platform are many. In recent years, the study of light-matter
interaction in these types of systems has been on the rise. One of the reasons for this
is that SQCs systems are very customizable and allow studying phenomena that are
not accessible or observable in typical systems (such as atoms with cavities). Since
the first time that the ultrastrong coupling regime was obtained with SQCs [6], the
range of potential applications proven by USC extends extensively, encompassing
areas such as quantum information processing [7], quantum metrology [8], nonlinear
optics [9], quantum optomechanics [10], quantum plasmonics [11] and even branches
like chemistry, quantum electrodynamics and materials science [12].

1



Chapter I. Introduction and Objectives 2

1.2 Objectives

This study aims to understand the basics of superconducting quantum circuit tech-
nology and put special interest in the study of light-matter interactions in this plat-
form. With this aim, it will be important to gain a comprehensive understanding
of the Quantum Rabi model, which will enable the exploration of the USC using
galvanic couplings in superconducting qubits.

The mathematical characterization of our system is a pivotal aspect of this study.
We aim to study the quantization of the system, the Hamiltonian derivation, a
numerical study of eigenvectors and eigenvalues and the ability to calculate the
coupling coefficient in the ultrastrong coupling regime for a flux qubit galvanically
coupled to a resonator.

On a parallel track, an initial experimental characterization of the device will be
carried out. This will involve the study of the kinetic inductance of thin aluminum
wires, since it is an important parameter to calibrate the coupling of the system in
the final device.



Chapter 2

Theoretical background

In this section, we will introduce superconducting quantum circuits, the main circuit
elements and one key element for the experiments that will be shown below: the
flux qubit. Following this, we will explain the concept of the Quantum Rabi model
and how superconducting quantum circuits can help us study regimes of interaction
beyond the strong coupling regime, a regime often unattainable in other fields in
Quantum Optics.

2.1 Superconducting Quantum Circuits

A superconducting circuit can be envisioned as an integrated circuit crafted from su-
perconducting materials. The introduction of superconductivity dramatically trans-
forms the circuit’s behavior, as classical variables evolve into quantum operators.
Consequently, the current I in a circuit is no longer a simple scalar but is expressed
as an operator Î that can act on the circuit’s wavefunction (|Φ⟩). This allows, for
instance, a superposition of two current states flowing in opposite directions to occur
within a quantum circuit [13].

A central element is the so-called Josephson Junction, a special connection be-
tween two superconductors connected by an insulator barrier that facilitates the
flow of supercurrent. Here, Cooper pairs, which are pairs of electrons in a super-
conductor, tunnel through the junction, allowing for the manifestation of quantum
phenomena. These junctions constitute the main building block of superconducting
qubits1. Often referred to as artificial atoms, these circuits provide the remarkable
ability to finely adjust their parameters within ranges that are challenging, if not
impossible, with natural atoms [15].

1These fundamental units of quantum information are made with SQCs thanks to their char-
acteristics of low dissipation, low susceptibility to noise, and nonlinearity [14].

3



Chapter II. Theoretical background 4

2.1.1 Circuit elements

The behavior of quantum circuits is quite similar to classical circuits. Both involve a
set of dynamic equations that describe the evolution of circuit parameters, whether
they are voltage-related or current-related. This information can also be expressed
using a Hamiltonian, a mathematical framework commonly used in quantum me-
chanics. However, a distinctive feature emerges in quantum circuits: the circuit
variables are represented by quantum operators, and their interactions adhere to
commutation relations [16].

One can think of any electrical circuit as a network of branches made up of two-
terminal components like capacitors and inductors. Each component is examined
under the lumped-element approximation [17] when dealing with SQCs. This ap-
proximation is valid when the size of the component is significantly smaller than
the wavelength of the frequencies involved. This condition is satisfied for microwave
frequencies, which are on the order of centimetres, whereas the circuit elements are
on the order of micrometres [18].

In the next subsections, we examine the different circuit elements that will be
used throughout the thesis [19].

Ic

CL
I0, CJ

IJIL

A A A

B B B

Figure 2.1: Diagram of different circuit elements that a superconducting quan-
tum circuit may have. From left to right: an inductor, a Josephson junction and

a capacitor.

2.1.1.1 Josephson Junctions

A Josephson Junction (JJ) is a component in an electrical circuit (depicted at the
centre in Figure 2.1) consisting of a tunnel junction between two superconductors.
This junction exhibits a remarkable quantum phenomenon known as the Josephson
effect. The Josephson effect refers to the ability of Cooper pairs in a superconductor
to tunnel through the insulating barrier, allowing for a coherent coupling between
the superconductors [20]. Its properties are defined by its capacitance, denoted as
CJ , and the Josephson energy EJ = Φ0

2π
I0, where Φ0 =

h
2e

is the superconducting flux
quantum, being e the electron charge, h the Planck’s constant and I0 the critical
current of the junction. The current of a JJ is

IJ = I0 sin

(
2π

Φ0

(ϕb − ϕa)

)
, (2.1)
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expressed in terms of the magnetic flux ϕ and since the relationship between the
current and voltage across the junction is nonlinear, Josephson junctions are a crucial
element for qubits2. Typical values range in the I0 ∼ 10 − 500 nA, leading to
EJ/h ∼ 5− 250 GHz [21].

2.1.1.2 Inductor

An inductance is a component (see first panel of Figure 2.1) that induces a voltage
when a change in the current passes through it. Its behaviour is defined by a property
known as inductance L, creating a resulting current

IL =
ϕb − ϕa
L

, (2.2)

which is linear to the flux difference. Typical values of L in SQCs range in the pH
in micron-sized loops to nH when using superinductors [22]. The ratio between the
Josephson inductance and the Junction Energy is defined as βL ≡ 2π

Φ0
LI0.

2.1.1.3 Capacitor

A capacitance is a circuit element (see first panel of Figure 2.1) that stores charge
and creates a current

IC = C(ϕ̈b − ϕ̈a), (2.3)

which is characterized by its capacitance C and its charging energy Ec = e2

2C
corre-

sponds to the energy transferred by an electron. Typical values of C range in the
fF to pF, with EC taking values in the MHz to GHz range [23]. The value of C will
usually be defined by the geometry of the circuit.

2The non-linearity of Josephson junctions give rise to anharmonicity, an important feature when
a qubit is targeted, since the two levels have a distinguishable energy transition from the other
levels
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2.2 Circuit quantization

In this section, we will delve into the principles of circuit quantization, exploring the
transformation from classical to quantum description.

The process of deriving a quantized Hamiltonian from an electrical circuit gov-
erned by quantum mechanical principles involves a systematic approach that is de-
scribed in [16] and we provide a summary of the main steps needed to quantize a
superconducting circuit. This quantization will only hold at temperatures below
ℏω/kB where kB is the Boltzmann constant and ℏω characteristic energy scale of
excitations. We also require excitations well below the superconducting gap [24].

Commencing with Kirchhoff’s laws, the procedure establishes equations of motion
for the system’s degrees of freedom, leading to the formulation of the Lagrangian.
Subsequently, the Hamiltonian is derived and ultimately subjected to quantization.

Firstly, we need to identify all the nodes in the circuit and designate one as the
ground reference point. Starting from this ground node, establish connections to all
other nodes by following a single path. The branches chosen in this process constitute
the spanning tree. The remaining branches are known as closure branches, and their
associated flux is determined by the circuit constraints.

To maintain consistency, we arbitrarily assign a direction for the current flow
in each branch; the specific direction chosen does not affect the analysis, but it is
necessary for coherence. For spanning branches, the relationship between node and
branch flux is ϕ = ϕj − ϕi.

However, for closure branches, a flux may be present. If closure branches enclose
a closed loop bordered by inductances or Josephson junctions, an additional flux
term is included in the relationship. The sign of this flux is not explicitly defined,
but consistency is crucial. In this context, choose a direction for the flux (either
escaping from the page or going inwards) and add it to the relationship when the
direction of the branch’s current coincides with that induced by the flux. Subtract
it if they go in opposite directions. Consequently, when there’s a flux, the relation
becomes

ϕ = ϕj − ϕi ± ϕext. (2.4)

When every flux of the system is well-defined, Kirchoff’s current conservation equa-
tion for each node are used, ensuring that the sum of all currents at the node equals
zero. The following step is to integrate all equations of motion to obtain the La-
grangian, knowing that

d

dt

(
∂L
∂ϕ̇i

)
=
∂L
∂ϕi

. (2.5)

Defining the node charges as the canonically conjugate momenta of the node fluxes

qi =
∂L
∂ϕ̇i

. (2.6)
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Then, the Hamiltonian can be found by using the Legendre transformation [25],

H =
∑
i

qiϕ̇i − L. (2.7)

To quantize the Hamiltonian one just has to promote the flux and the charge to
quantum mechanical operators {

ϕi −→ ϕ̂i

qi −→ q̂i
(2.8)

that must obey the commutation relations[
ϕ̂i, q̂j

]
= iℏδij. (2.9)

where δij is Kronecker’s delta. Using flux and charge operators as quantum me-
chanical operators, the Hamiltonian Ĥ associated with the studied system will be
obtained. This Hamiltonian will enable us to derive the circuit’s wavefunction by
solving the Schrödinger equation.

2.3 Flux qubits

In the context of this thesis, a flux qubit galvanically coupled to a resonator will be
studied. The choice of qubit is motivated by two main points: firstly, flux qubits
are the main technology developed in the IFAE QCT group. Secondly, there is
an interest in using an inductive-type coupling, thus the best approach is to use a
flux-type qubit.

Flux qubits are engineered to possess, as qubit states, two eigenstates originating
from the inductive component of the Hamiltonian. As a consequence, the typical out-
come involves associating states |0⟩ and |1⟩ with two supercurrent states circulating
without dissipation along a superconducting loop. To induce these supercurrents,
the enclosed flux in the loop is adjusted, leading to frustration and resulting in ei-
ther two distinct or degenerate configurations of branch fluxes. This condition often
corresponds to the presence of permanent currents circulating on the loop [26].

If an external magnetic flux is threaded through this loop with magnitude ϕext/Φ0 =
f = 0.50, the two lowest energy quantum states are approximately the symmet-
ric and antisymmetric superposition of counter-circulating persistent-current states,
arising a two-level system state that will perform as a qubit. The most commonly
used in research are the RF-SQUID and the three-junction flux qubit. Even though
these two will be studied as candidates for USC in Chapter 3, in this section we
provide their main features.
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2.3.1 RF-SQUID

In literature, often referred to as Radio Frequency Superconducting Qubit Inter-
ference Device (RF-SQUID). The RF-SQUID typically consists of a superconduct-
ing loop with inductance interrupted by one Josephson junction. These junctions,
formed by thin insulating barriers between superconducting electrodes, allow quan-
tum tunnelling of Cooper pairs.

However, its size can pose challenges as the qubit’s sensitivity to stray magnetic
fields increases, its lifespan diminishes under conditions analogous to other qubits
[23], and it requires an inductor, which is an important drawback.

2.3.2 Three-junction flux qubit

The contemporary design of a flux qubit, employing three junctions, represents
a more recent development compared to the traditional understanding of a flux
qubit [27]. By introducing a magnetic flux through the loop, we induce frustration,
resulting in a degenerate ground state. The degeneracy of this ground state is solely
resolved by quantum fluctuations. An advantageous aspect of this design is that the
multiwell structure is exclusively formed through Josephson junctions, eliminating
the need for additional inductors. Consequently, this design may be significantly
more compact, potentially on the scale of a few micrometres.

Some advantages of Three-Junction Flux Qubit vs. RF-SQUID [28]:

1. Simplified Construction: Elimination of the need for additional inductors
simplifies the construction process, potentially reducing fabrication complexity
and costs.

2. Reduced Sensitivity to Stray Magnetic Fields: The three-junction flux
qubit may exhibit lower sensitivity to stray magnetic fields, contributing to
improved stability in various environments.

3. Potential for Quantum Information Processing: With advantages in
size and construction, the three-junction flux qubit, like the RF-SQUID, holds
potential for applications in quantum information processing.

These reasons will make the three junction flux qubit, in the end, a better candidate
beforehand.
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2.4 Quantum Rabi Model

In the last sections, we have introduced the basics of superconducting quantum cir-
cuits. Now we will introduce the quantum model needed to understand light-matter
interaction in these systems. The Quantum Rabi Model [29] is a quantum model
employed to describe the interaction between a two-level system and a resonator.
In this thesis, a flux qubit creates an artificial two-level system, which is galvani-
cally coupled with a resonator. This system effectively creates a ground state |0⟩
and an excited state |1⟩, isolated because of anharmonicity. The interaction with
the quantized electromagnetic field mode is encapsulated in the Hamiltonian, with
key parameters being the qubit frequency ω01, representing the energy difference
between the qubit states, and the resonator frequency ωr, characterizing the energy
states of the microwave field. The Rabi frequency g stands out as the parameter
that describes the strength of coupling between light and matter. The Hamiltonian
takes the following form

Ĥ =
ℏω01

2
σ̂z + ℏωrâ†â+ ℏgσ̂x(â+ â†). (2.10)

Here, σ̂z and σ̂x denote the Pauli matrices representing the qubit operators, and â
and â† are the annihilation and creation operators for photons, respectively. We can
identify the different terms of the Hamiltonian

Ĥ = Ĥqubit + Ĥres + Ĥint, (2.11)

corresponding with the one of the qubit, the resonator, and the interaction, respec-
tively.

When the coupling is weak (g/ωr ≪ 1), which is common in the Quantum Optics
field, the Rotating Wave Approximation (RWA) is an approximation that simplifies
the interaction term by neglecting fast-oscillating terms. Often, this model is referred
to as the Jaynes-Cummings Model and yields the following Hamiltonian

ĤJC =
ℏω01

2
σ̂z + ℏωrâ†â+ ℏg(σ̂+â+ σ̂−â

†), (2.12)

being σ̂+ and σ̂− the raising and lowering operators for the qubit. The RWA as-
sumption is justified when the the qubit and field frequencies are near resonance
(ω01 − ωr ≪ ω01 + ωr) and the interaction is weak [30].

The RWA significantly simplifies the mathematical treatment of the Rabi model.
However, in some cases as in this thesis, the neglected counter-rotating terms may
become relevant, especially in situations involving strong qubit-field coupling or
when considering more complex quantum systems.
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2.5 Ultrastrong Coupling Regime

Up to this part of the thesis, we have described the system as a qubit and a quan-
tum resonator that interact. Nevertheless, as the coupling between these systems
intensifies, the Jaynes-Cummings Model (2.12) is not correct. That is because the
qubit and the resonator start to hybridize as the coupling increases. In such cases,
it becomes impractical to analyze them independently, leading to their classification
as the Ultrastrong Coupling Regime where 0.1 ≲ g/ωr [21].

Since the first SQCs that achieved the USC regime [6], these have been widely
used since they can be designed or even tuned in situ [12]. Some strategies to
couple a circuit qubit that can be done are geometrical inductances, capacitive
coupling, Josephson inductance... However, this thesis has targeted the use of kinetic
inductances, because of their promising high inductance, as the source of coupling,
shared by the resonator and the qubit. Since these inductances are obtained with
narrower wires, this method can achieve the USC regime while controlling the size of
the chip [21]. To understand the physics behind kinetic inductors and superinductor
materials in superconducting circuits, the next brief section is presented.

2.6 Kinetic inductance and superinductor materials

In superconducting materials, Cooper pairs can move freely for a long distance
without scattering. This makes the kinetic inductance of a superconductor non-
negligible. One candidate to present a high kinetic inductance is disordered super-
conductors. Since these superconductors possess grains of oxides or nitrides, they
can act as a sum of small Josephson junctions, creating an effective inductance be-
low the superconducting critical temperature. Another possibility is narrowing thin
aluminum wires, which force Cooper pairs to collide. A first approximation can be
made to predict this kinetic inductance [31]

Lkin,□ =
0.18ℏ
kB

Rn,□

Tc
, (2.13)

where Rn,□ is the normal state sheet resistance3 of the material at 4K and Tc =
1.32±0.02 K [32] is the critical temperature of aluminium for 20 mm thickness. Since
this equation depends proportionally on its resistance, we will target fabricated chips
that have long and narrow wires, achieving the largest resistance possible. Some no-
table candidates as superinductors are granular aluminum (GrAl) [32] or aluminium
nitride (NitrAl) [33]. Nonetheless, thin aluminum wires are easier to fabricate since
do not require evaporation with gases and can achieve large inductances as well.
These will later be studied in Section 4.5.

3In the field of SQCs, since we work with materials with small thickness compared with its size,
it is convenient to express variables in terms of a square (□), defined as the surface of a square
with sizes equals to the width of the thin wire studied.



Chapter 3

Numerical and experimental methods

In this Section, we present the two numerical methods applied in the thesis to
solve the Hamiltonian associated with the different systems studied, as well as the
experimental setup to measure the resistance of thin aluminum wires done at IFAE
QCT lab.

3.1 Numerical approach: Finite dimension diago-
nalization

Once a Hamiltonian of the system is derived, our final task is to obtain its spectra
and the eigenstates of the system. A numerical approach must be taken, since its
Hamiltonian possesses non-linear terms and an analytical solution does not exist,
or is not known. In this thesis, two methods have been used. For simpler systems
(those containing 2-3 variables) the diagonalization can be done by calculating each
matrix element on a given basis. Nevertheless, since more complex systems can have
higher computational complexity, libraries optimized for these calculations are used
nowadays for researchers, such as CircuitQ [34] or SCQubits [35].

3.1.1 Matrix element calculations

In this section, we will introduce two distinct mathematical representations for these
operators, each associated with its own set of states in their respective Hilbert spaces.
It is important to note that defining representations of these operators becomes
necessary for calculating the system’s wavefunction and eigenenergies.

Charge and flux, within the realm of quantum mechanics, differ from momen-
tum and position operators commonly encountered in classical mechanics. Charge,
denoted as q̂, is a discrete operator proportional to the number of Cooper pairs:
q̂ = −2en̂. On the other hand, the flux operator, ϕ̂, is linked to the superconducting

11
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phase ϕ, expressed as ϕ̂ = 2πΦ̂/Φ0. Consequently, the flux operator exhibits a pe-
riodic representation. This characteristic implies that plane waves are not suitable
representations for these operators, necessitating the introduction of a new phase-
number representation.

• In the phase representation, the circuit wavefunction

|Ψ⟩ =
∫ 2π

0

dϕ1...

∫ 2π

0

dϕN |Ψ(ϕ1, ..., ϕN)|ϕ1, ..., ϕN⟩ (3.1)

expands over states with a well-defined value of the node phase |ϕi⟩. For
instance, one basis which will be convenient to use is the harmonic eigenbasis

|k⟩ =
( mω

22kπℏk!

)1/4

Hk

(√
mω

ℏ
ϕ

)
e−

mωϕ2

2ℏ (3.2)

where Hk is the kth Hermite function [36], m is the mass and ω is the frequency
of the oscillator.

• The number representation will depict the states with a given number of excess
Cooper pairs |n⟩, utilizing the fact that the charge operator is defined as the
sum of projectors onto a well-defined number of Cooper pairs,

Since finding the exact solution of the qubit’s Hamiltonian would require the calcu-
lation of an infinite-sized matrix, a truncation of the matrix element basis is needed
[16]. To carry out this step, the convergence of the solution will have to be checked.
Depending on the form of each Hamiltonian studied, one of the two representations
will be used, targeting the smallest base possible. For instance, in qubit applica-
tions, the energy of the Josephson Junction is usually bigger than the energy of the
Cooper pairs, implying that a state with many Cooper pairs is highly improbable,
allowing a base truncation that helps the complexity of the calculation [37].

3.1.2 Python’s Library SCQubits

SCQubits is an open-source Python library for simulating superconducting qubits.
It provides tools for simulating and analyzing quantum circuits, with an emphasis
on superconducting qubits.

The library includes functionalities for constructing Hamiltonians, simulating time
evolution, computing spectra, and analyzing various aspects of superconducting
qubit systems [38]. It is often used in the field of quantum computing and quantum
information.

In this thesis, this library has been used for the simulations that required optimized
calculations.
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3.2 Experimental methods: resistance measurements

It is of key importance to control and calibrate the inductance of the coupling element
that will be placed in the final chip so that we are sure that we will reach the USC
regime. As we explained in Section 2.6, the resistivity of these inductors at normal
temperature and their inductance are related. Henceforth, we will need to obtain
these values experimentally with a four-probe station.

A four-probe station [39] is a device used to characterize the electrical properties
of materials. It is a type of measurement setup that employs four individual probes
to make contact with a sample or device under test. Two of the probes are used to
inject a current into the sample, and the other two probes are used to measure the
voltage.

V + V −

I+ I−

DUT

Figure 3.1: Laboratory set-up of a four-probe station at Quantum Computing
Technologies Group IFAE and a scheme of the current and voltage probes applied

to a Device Under Test (DUT).

This configuration, described in Figure 3.1, allows for precise and accurate mea-
surements of resistivity, with key advantage being the eliminations of the effects of
contact resistance. When only two probes are used (as in a two-point probe mea-
surement), contact resistance can interfere with the accuracy of the measurements.

This methodology is used in this thesis to study a chip of thin Aluminum made
at IFAE QCT group. In the following image, the station used in the experiments is
shown, and the results obtained will be explained in Section 4.5.





Chapter 4

Results and Discussions

In this section of the thesis, results and their discussion are shown. Since we aim to
study the coupling coefficient, the nature of the USC regime obligates us to study first
the qubit and then the coupled system. Also, a brief experimental inside is shared
on the estimated inductance of superconducting aluminium and its experimental
limitations.

4.1 A simple circuit containing a Josephson Junc-
tions: the RF-SQUID

We will provide the study of the simplest candidate that can be used for USC experi-
ments with flux qubits: the RF-squid. We will show how to obtain the Hamiltonian,
the eigenenergies and the main parameters involved in the system and its spectra.

4.1.1 Mathematical derivation of the Hamiltonian

To study the circuit, we will derive its Hamiltonian, using the equations and concepts
introduced in Sections 2.1.1 and 2.2. From the circuit schematics depicted in Figure
4.1, one can derive the following set of relations between node and branch variables
using equation (2.4), {

ϕa = ϕ1 − ϕ0

ϕb = ϕ0 − ϕ1 + ϕext
(4.1)

where we have added to ϕext the external flux because it is the closure branch. For
each node, and in this case in node 1, the current conservation equation can be
applied IL = ICsh

+ ICJ
+ IJJ .

15
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ϕa ϕb

ϕext

O

1

CshIc, CJ

L

Figure 4.1: Circuit of an RF-squid with an external flux applied ϕext clockwise,
consisting of an inductor with inductance L, a Josephson junction with critical
current Ic and capacitance CJ and a capacitance shunted Csh. It also indicates

the different nodes 1, O and the branch fluxes ϕa, ϕb.

Using equation (4.1), and defining ϕ0 = 0 as the ground and completing each
intensity term

ϕa
L︸︷︷︸
IN

= −(Csh + CJ)ϕ̈a + Ic sin

(
2π

Φ0

(ϕa − ϕext)

)
︸ ︷︷ ︸

OUT

. (4.2)

Integrating with respect to time, and considering (2.5), we obtain the following
Lagrangian:

L =
Csh + CJ

2
ϕ̇2
a −

1

2L
ϕ2
a + EJ cos

(
2π

Φ0

(ϕa − ϕext)

)
. (4.3)

We can perform the following change of variables to derive a simpler form of the
Lagrangian

ψ ≡ 2π
Φ0
ϕa

f ≡ ϕext
Φ0

CΣ = Csh + CJ

⇒ L =

(
Φ0

2π

)2
CΣ

2
ψ̇2−

(
Φ0

2π

)2
1

2L
ψ2+EJ cos (ψ − 2πf). (4.4)

Following the details described in equation (2.6), we proceed with the derivation of
the Hamiltonian by calculating the conjugated momentum

p =
∂L
∂ψ̇

=

(
Φ0

2π

)2

CΣψ̇. (4.5)
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The last step consists of performing the Legendre transformation described in equa-
tion (2.7). With these changes, the Hamiltonian of the system is

HRF = pψ̇ − L =

(
Φ0

2π

)2
CΣ

2
ψ̇2 +

(
Φ0

2π

)2
1

2L
ψ2 − EJ cos (ψ − 2πf). (4.6)

Finally, introducing the canonical moment, and the definitions of Ec, βL, and EJ ,
given in the Section 2.1.1 and promoting the flux and the charge operators, to
quantum mechanical operators as we already showed in equation (2.8), the final
Hamiltonian is obtained,

ĤRF =
4Ec
ℏ2

p̂2 +
EJ
2βL

ψ̂2 − EJ cos
(
ψ̂ − 2πf

)
. (4.7)

4.1.2 Study of the double well potential

The election of the parameters will determine whether the potential has a double
well or not, a required condition to obtain a flux qubit. Using the condition that
there are only 2 minima near the so-called sweet spot, we can find which parameter
constraints must be respected for the RF-SQUID. Evaluating the potential at the
sweet spot for convenience and calculating the derivative of the potential in equation
(4.7) in respect to ψ̂,

Û ′ =
1

EJ
Û(ψ̂) =

1

2βL
ψ̂2 + cos ψ̂. (4.8)

Now, imposing the condition for a minimum in a single-variable system, we obtain
a relation that

dÛ ′

dt
=

ψ̂

βL
− sin ψ̂ = 0 ⇒ ψ̂

βL
= sin ψ̂. (4.9)

Apart from the trivial solution ψ = 0, since βL will determine the steepness of the
first part of the equality, it is needed that βL > 1 so that the two equations cross
again. In Section 4.1.2, we show the design parameters chosen for the 1.5 GHz
design1,

• Design RF-SQUID: Ic = 0.08 µA, C = 43 fF, Lc = 5.5 nH

which indeed fulfil βL > 1, thus preserving a double well-potential.

1These parameters were chosen in other studies done by PhD student Alba Torras-Coloma.
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4.1.3 Diagonalization and theoretical spectra

In this subsection, we aim to diagonalize the Hamiltonian and obtain its spectra
with the numerical approach explained in Section 3.1.

4.1.3.1 Diagonalization

Once the RF-squid Hamiltonian in equation (4.6) is derived, we can transform its
first two terms into a Harmonic oscillator (3.2) by defining m = ℏ2

8Ec
and ω =

2Ec

ℏ

√
2EJ

βLEc
, where m and ω would be the mass and frequency of the oscillator. We

leave the third term of the Hamiltonian in equation (4.7) in terms of the phase
representation, which is easy to solve numerically. In the case of the RF-SQUID’s
Hamiltonian, this procedure is key, since its second term, would be very difficult to
represent on both basis. This fact will help us to obtain every matrix element in the
harmonic eigenfunctions. Expressing Ĥ with the ladder operators â and â†,

Ĥ = ℏωâ†â− EJ cos
(
ψ̂ − 2πf

)
(4.10)

and giving now the trigonometric term in terms of the matrix elements

Hjk = ℏωδjk −
EJ
2

(
e−i2πf ⟨j| eiψ̂ |k⟩+ ei2πf ⟨j| e−iψ̂ |k⟩

)
. (4.11)

The explicit expressions of the matrix elements ⟨j| e±iϕ |k⟩ can be found in [40]. In
Appendix A.1 we provide the Python code implementing the Hamiltonian diagonal-
ization of the system.

4.1.3.2 Convergence of the candidate parameters and simulation

Before simulating the final spectra, the convergence of the solution will be assessed
at f = 0.5. The idea of this step is to optimize as much as possible the number of
bases required for the simulation.

As can be seen in Figure 4.2, the frequency transition quickly converges when
increasing the number of bases used. A general tendency can be appreciated, since
when increasing by 5 de basis number, the error descends 3 orders of magnitude.
Our criteria to take a specific number of basis is based on the fact that lab equipment
is precise up to Hz, so if the frequency transitions are of the order of GHz, we will
require that the relative error is around 10−7 − 10−8. Henceforth, for the spectra
simulations, depicted in Figure 4.2, ntrunc = 18 is used in the calculations since it
suffices for the requirements.



Chapter IV. Results and Discussions 19
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Figure 4.2: At the left is depicted the convergence of the frequency transition
of the 1.5 GHz RF-SQUID for f = 0.5. In blue is depicted the ground-excited
excitation frequency in GHz for each number of basis ntrunc used, and in green is
depicted its relative error (ϵrelative). And at the right, the spectra of the 1.5 GHz
RF-SQUID first three energy transitions for the parameters given in Section 4.1.2

and using ntrunc = 18 harmonic bases.

Even though, theoretically, the RF-SQUID can reach the USC when a resonator
is added, practically it has some inconveniences. The main reason is the high depen-
dence on the large inductance values, which can only be achieved with superinductor
materials [41]. To obtain this inductance, it is important to calibrate precisely the
evaporation of the granular aluminium, which can be a challenge. For instance, it
is not easy to control parameters between evaporations. Even controlling precisely
the sample parameters: pressure, oxygen flow, evaporation rate, etc. very different
resistances can be obtained in the process (and thus inductance). Another incon-
venience that may present is when the chip is baked, the properties of the material
such as Tc and resistance can change [42].
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4.2 Our candidate: C-shunted 3 Josephson junction
flux qubit with non-negligible inductance.

In this section, the following C-shunted 3 Josephson junction flux qubit will be
studied as a qubit candidate to reach the USC regime. The main difference with
the RF squid is that the 3-JJ flux qubit contains 3 junctions instead of 1, providing
better control over the parameters of the system. Furthermore, it requires smaller
inductance values to reach the USC regime.

4.2.1 Mathematical derivation of the Hamiltonian

As in the derivation done in Section 4.1 for the RF-squid, to study the circuit, we
start by giving the relation between node and branch flux variables following the
schematics of Figure 4.3, 

ϕ1 = ϕA − ϕ0

ϕ2 = ϕB − ϕA

ϕ3 = ϕC − ϕB + ϕext

(4.12)

where we have used equation (2.4) and adding the external flux to ϕext because it is
a closure branch. Then, by imposing the current conservation and defining ϕ0 = 0

ϕ4 ϕ2

ϕext

O

B

Csh

Ic, CJ

L

C

A

Ic, CJ

α

ϕ1

ϕ3

Figure 4.3: C-shunted 3 Josephson junction flux qubit scheme with an exter-
nal fluxed applied ϕext counter-clockwise. The circuit contains an inductor L, 3
Josephson junctions with two of them with critical current Ic and capacitance CJ
with the third one αIc, αCJ and a shunted capacitance Csh. It also indicates the

different nodes and the branch fluxes ϕ1, ϕ2 and ϕ3.
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as the ground, we can derive the equations of motion for each node.

• In node A 
∑
Iin = Ic sin

(
2π
Φ0
ϕA

)
+ CJ ϕ̈A∑

Iout = αIc sin
(

2π
Φ0
(ϕB − ϕA)

)
+ ᾱCJ(ϕ̈B − ϕ̈A),

(4.13)

where have also defined ᾱ = α + Csh

CJ
for convenience.

• In node B 
∑
Iin = αIc sin

(
2π
Φ0
(ϕB − ϕA)

)
+ ᾱCJ(ϕ̈B − ϕ̈A)∑

Iout = αIc sin
(

2π
Φ0
(ϕC − ϕB)

)
+ CJ(ϕ̈C − ϕ̈B),

(4.14)

• and in node C{∑
Iin = Ic sin

(
2π
Φ0
(ϕC − ϕB)

)
+ CJ(ϕ̈C − ϕ̈B)∑

Iout = −ϕC
L
.

(4.15)

Now, integrating equations (4.13), (4.14), (4.15) with respect to time, and using the
equation (2.5), leads to the following Lagrangian

L =
C

2
ϕ̇2
A + ᾱ

C

2
(ϕ̇A − ϕ̇B)

2 +
C

2
(ϕ̇B − ϕ̇C)

2 + EJ cos

(
2π

Φ0

ϕA

)
+ αEJ cos

(
2π

Φ0

(ϕB − ϕA)

)
+ EJ cos

(
2π

Φ0

(ϕB − ϕC)

)
− ϕ2

C

2L
.

(4.16)

Changing the variables from node fluxes to branch ones (4.12), the following La-
grangian is obtained

L =
C

2
ϕ̇2
1 + α

C

2
ϕ̇2
2 +

C

2
ϕ̇2
3 + EJ cos

(
2π

Φ0

ϕ1

)
+ αEJ cos

(
2π

Φ0

ϕ2

)
+ EJ cos

(
2π

Φ0

ϕ3

)
− (ϕ1 + ϕ2 + ϕ3 − 2πf)2

2L
.

(4.17)

Finally, we can do two last changes, firstly ψi = (2π/Φ0)ϕi and secondly, we can
redefine the magnetic frustration f ≡ ϕext/Φ0, and using equations (2.6), (2.7) and
adding the variable λ = ϕ1+ϕ2+ϕ3− 2πf , we calculate the conjugated momentum

∂L
∂ψ̇

=

p1p2
pλ

 = Φ2
0C

1 + α α −α
α 1 + α −α
−α −α α

ψ̇1

ψ̇2

ψ̇λ

 . (4.18)
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Considering equation (2.7), we can perform a Legendre transformation to obtain the
Hamiltonian of the 3JJ flux qubit system. The last step is to promote the flux and
charge variables to quantum operators, as it was explained in equation (2.8). These
changes yield the Hamiltonian of the C-sh 3JJ flux qubit with non-negligible loop
inductance,

Ĥ3JJ+L = T̂ + Û ,

T̂ =
1

2Φ2
0C

(
p̂1 p̂2 p̂λ

)1 0 1
0 1 1
1 1 1+2ᾱ

ᾱ

p̂1p̂2
p̂λ

 , (4.19)

Û = EJ

(
cos ψ̂1 + cos ψ̂2 + α cos (λ̂− ψ̂1 − ψ̂2 + 2πf)− 1

2βL
λ̂2
)
.

4.2.2 Study of the double-well potential

Since we target a flux qubit, we have to study the potential to be sure that we
can obtain a double-well. Evaluating the magnetic frustration at f = 0.5 and we
normalize with respect to EJ , obtaining the following expression,

Û ′ =
1

EJ
Û(ψ̂1, ψ̂2, λ̂) = − cos ψ̂1 − cos ψ̂2 + α cos (λ̂− ψ̂1 − ψ̂2) +

1

2βL
λ̂2. (4.20)

Imposing the minima condition, we perform the gradient of the potential,

∇Û ′ =

sin ψ̂1 + α sin (λ̂− ψ̂1 − ψ̂2)

sin ψ̂2 + α sin (λ̂− ψ̂1 − ψ̂2)
λ̂
βL

− α sin (λ̂− ψ̂1 − ψ̂2)

 = 0⃗ (4.21)

and if we subtract the first with the second equation, in the places where ∇Û ′ = 0
we can redefine ψ̂1 = ψ̂2 ≡ ψ̂. Also, adding up the second and the third equation in
(4.21), λ̂ = −βL sin ψ̂.

Considering these equalities, we shall define a one-variable-potential where all
their points are either a maximum, a minimum or a turning point

Û ′(ψ̂) = −2 cos ψ̂ + α cos (βL sin ψ̂ + 2ψ̂) +
βL
2

sin 2ψ̂. (4.22)

Nevertheless, because the potential was multivariable, the correct way would be to
study the potential relative points with the Hessian matrix. The following method
gives some constraints but, in the end, a numerical verification should be made since
saddle points could be mistaken as minimum points.
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Using the fact that the second-order term will indicate if we have a maximum or
a minimum at the origin, and that the fourth-order term can create the double-well
shape, the potential is expanded up to the fourth power with a Taylor series,

Û ′(ψ̂) = (α− 2) + Aψ̂2 +Bψ̂4 +O(ψ̂6)

A = 1 + βL
2
− α

2
(2 + βL)

2 < 0

B = 1
12
(2αβL(2 + βL)− 1) > 0

⇒ α >
1

2 + β
. (4.23)

The third order does not appear because of our election of magnetic frustration,
which gives rise to a symmetric potential, simplifying our work. Using the parame-
ters of the designed chip,

• Design 3JJ+L: CJ = 5.0 fF, Ic = 0.2 µA, α = 0.55, Csh = 25 fF, Lc = 0.4 nH

it can be depicted that, even counting on some flaws in fabrications2, the double
well would remain, as seen in Figure 4.4. We must emphasize the advantages of
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Figure 4.4: Cut of the potential 4.20 between the two minima for the used
parameters 4.2.2 of the qubit and varying α emulating flaws of fabrication in sizes

of the junctions.

these qubits in front of the RF-SQUID, since we only need inductances of an order
of magnitude less.

2These fabrication flaws can come from errors within sizes, asymmetries, deviation from the
critical current and stray capacitance among others.



Chapter IV. Results and Discussions 24

4.2.3 Diagonalization and spectra

In this chapter, we aim to diagonalize the Hamiltonian and obtain its spectra with
the numerical approach explained in Section 3.1.2. In this case, we utilize SCQubits
because the 3JJ qubit is numerically more complex than RF-SQUID, and it requires
optimization. In the Appendix A.2 we provide the Python code implementing the
Hamiltonian diagonalization of the system with SCQubits. In this study of the
convergence for f = 0.5, we will demand convergence up to the order of Hz of the
spectral calculation. This condition will assure us that the eigenfunctions used give
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Figure 4.5: Convergence of the frequency transition of the 1.5 GHz three junction
flux qubit for f = 0.5. In blue is depicted the ground-excited excitation frequency
in GHz for each number of basis used, and in green is depicted its relative error

(ϵrelative).

a precise coupling calculation. Following this criteria, and considering Figure 4.5,
we can see that using a 21 harmonic basis for each degree of freedom will suffice.
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Figure 4.6: Spectra of the 1.5 GHz three junction flux qubit for the parameters
given in 4.2.2 using ntrunc = 21 harmonic bases.
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4.3 The coupled system: C-shunted 3 Josephson
junction flux qubit coupled to an LC resonator

In this section of the thesis, we provide the study of our target system, the C-shunted
Josephson junction qubit with a galvanically coupled resonator. We will show the
Hamiltonian derivation, its spectra and the calculations of the coupling coefficient,
which we expect to be on the USC regime.

4.3.1 Mathematical derivation of the Hamiltonian

The purpose of this section is to obtain the full system Hamiltonian and match
each term with (2.11). If we can obtain a pure interaction term, we will be able to
calculate numerically the expected coupling term.

First and foremost, we start by representing schematically the full system, which
is the same as in Section 4.2, but with a resonator galvanically attached.

ϕ4 ϕ2

ϕext

O

B

Csh

Ic1, CJ1

L

C

A

Ic2, CJ2

α

ϕ1

ϕ3

CR

LR

D

ϕ6

ϕ5

Figure 4.7: C-shunted 3 Josephson junction flux qubit coupled to an LC res-
onator by a shared inductance, with an external fluxed applied ϕext counter-
clockwise. The circuit contains an inductor L, 3 Josephson junctions with two
of them with critical current Ic and capacitance CJ with the third one αIc, αCJ
and a shunted capacitance Csh. It is coupled to a resonator within an inductor
LR and a capacitance, CR It also indicates the nodes and the branch fluxes ϕi.

To study the circuit, we start by defining ϕ0 = 0 as the ground of the system and
apply Kirchoff’s law in each node. For node A

CJ ϕ̈A+(αCJ+Csh)(ϕ̈A− ϕ̈B) = −I0 sin
(
2π

Φ0

ϕA

)
−αI0 sin

(
2π

Φ0

(ϕA − ϕB)

)
. (4.24)
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For node B

(αCJ + Csh)(ϕ̈B − ϕ̈A) + (λ2 + β2)CJ(ϕ̈B − ϕ̈C) =

− αI0 sin

(
2π

Φ0

(ϕB − ϕA)

)
− β2I0 sin

(
2π

Φ0

(ϕB − ϕC)

)
.

(4.25)

For the node C

CJ(ϕ̈D − ϕ̈B) = I0 sin

(
2π

Φ0

(ϕC − ϕB)

)
− 1

LC
ϕC − 1

LR
(ϕC − ϕD). (4.26)

And finally, for node D

CRϕ̈D = − 1

LR
(ϕD − ϕC). (4.27)

Integrating over time the equations of motion (4.24), (4.25), (4.26) and (4.27), and
by using the Euler-Lagrange equation (2.5) we obtain the Lagrangian of the system

L =
CJ
2
ϕ̇2
A +

αCJ + Csh
2

(ϕ̇A − ϕ̇B)
2 +

CJ
2
(ϕ̇B − ϕ̇C)

2+

+
CR
2
ϕ̇2
D + EJ cos

(
2π

Φ0

ϕA

)
+ EJ cos

(
2π

Φ0

(ϕC − ϕB

)
+

+ αEJ cos

(
2π

Φ0

(ϕB − ϕA)

)
− 1

2Lc
ϕ2
C − 1

2LR
(ϕC − ϕD)

2.

(4.28)

Then, changing node to branch flux variables following the defined directions in
Figure 4.7, where we defined ϕ4 as the closure branch. To give an easier form
of the Lagrangian and remove the flux-dependent variable, we define ϕ6 ≡ ϕR,
use phase variables φi = (2π/Φ0)ϕi, and transform the magnetic frustration f ≡
ϕext/Φ0. Taking into account the flux branches, ϕ2 = ϕext − ϕ1 − ϕ3 − ϕ4. All these
transformations bring us

L =

(
Φ0

2π

)2(
CJ
2
φ̇2
1 +

αCJ + Csh
2

(φ̇1 + φ̇3 + φ̇4)
2 +

CJ
2
φ̇2
3 +

CR
2
φ̇R

2

)
+

+ EJ cosφ1 + EJ cosφ3 + αEJ cos (φ1 + φ3 + φ4 − f)−

−
(
Φ0

2π

)2(
1

2Lc
φ2
4 +

1

2LR
(φ4 − φR)

2

)
.

(4.29)

As the final steps, we must calculate the generalized momentum, where we have
also defined ᾱ = αCJ + Csh for convenience

∂L
∂φ̇

=


p1
p3
p4
pR

 = ᾱ

(
Φ0

2π

)2


1 + CJ

ᾱ
1 1 0

1 1 1 0
1 1 1 0
0 0 0 CR

ᾱ



φ̇1

φ̇3

φ̇4

φ̇R

 (4.30)
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to perform the Legendre transformation. And remembering to promote flux and
charge into quantum operators, this transformation will yield us a Hamiltonian
which consists of three parts, each part contains the following terms

Ĥqubit =

(
2π

Φ0

)2{
(p̂1 − p̂4)

2

2CJ
+

(p̂3 − p̂4)
2

2CJ
+
p̂24
2ᾱ

+

(
1

2Lc
+

1

2LR

)
φ̂2
4

}
−

− EJ cos φ̂1 − EJ cos φ̂3 − EJ cos (φ̂1 + φ̂3 + φ̂4 − 2πf)

(4.31)

Ĥres =

(
2π

Φ0

)2
p̂2R
2CR

+

(
Φ0

2π

)2
1

2LR
φ̂2
R (4.32)

Ĥint = − EJ
βL,R

φ̂4φ̂R. (4.33)

4.3.2 Diagonalization and spectra

Once we get the Hamiltonian of the full system, we can simulate its spectra. For
the same reasons as in Section 4.2.3, we will use SCQubits.

Studying the USC regime of this system does not require precise eigenenergies and
eigenvalues of the full system. So, in this case, we only aim to depict an approximate
form of the spectra.
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Figure 4.8: Convergence of the frequency transition of the 1.5 GHz three junction
flux qubit coupled to a resonator for f = 0.5. In blue is depicted the ground-excited
excitation frequency in GHz for each number of basis used, and in green is depicted

its relative error (ϵrelative).

Even though in Figure 4.8 we can appreciate that the spectra have not converged
with the criteria of Hz precision, we will not target more precise calculations, since
the dimensions of the system are computationally challenging for a regular computer.
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In Appendix A.3 we provide the Python code implementing the Hamiltonian di-
agonalization of the system that is depicted in Figure 4.9. In the context of this
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Figure 4.9: Spectra of the 1.5 GHz three junction flux qubit with a 1.5 GHz
coupled resonator for the parameters given in 4.2.2 and 4.3.2 using ntrunc = 21

harmonic bases.

thesis, the parameters of the LC resonator are:

• Design 1.5 GHz resonator: Cr = 3.46 · 103 fF, Lr = 2.95 nH.

These are chosen so that the frequency of resonance coincides with the qubit to have
maximum coupling.
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4.4 Study of the coupling coefficient

Once the interaction Hamiltonian is obtained, we can study the coupling coefficient
of the full system. This coefficient g, will indicate if we have achieved the USC
regime. To obtain it, we will follow the methodology described in the supplemen-
tary material of [43] and [44]. This approximated method requires expressing the
interacting Hamiltonian based on the qubit and the phase of the resonator φ̂R in
terms of annihilation/creation operators

Ĥint = − EJ
βL,R

φ̂4φ̂R = − EJ
βL,R

√
ℏ

2mRωR
(â† + â)

∑
k,k′=0,1

⟨k| φ̂4 |k′⟩ |k′⟩ ⟨k| . (4.34)

Now, rewriting the operator for convenience

Ĥint =
∑

α=x,y,z

ℏgα(â† + â)σ̂α = ℏ
(

gz gxe
−iξ

gxe
iξ −gz

)
︸ ︷︷ ︸

g

(â† + â) (4.35)

where we have defined gα as the coupling coefficient, we have used the Pauli matrices
{σ̂x, σ̂y, σ̂z} and ξ is a phase. Calculating the absolute value of the determinant of
this 2×2 coupling matrix, we obtain that, with the parameters used for the system,
the coupling coefficient is g

ωr
≈ 0.458.

This parameter fulfils the USC regime criteria, 0.1 < g/ωr < 1. Therefore, we
conclude that the system can achieve the USC regime. Furthermore, we must em-
phasize the importance of the coupling inductance. Figure 4.10 shows the rapid
increase of the coupling when increasing Lc.
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Figure 4.10: Coupling coefficient simulation on the dependence on the coupling
inductance Lc.

In Appendix A.4 we provide the Python code that calculates the coupling coeffi-
cient for this system.
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4.5 Characterization of the chip: first steps

In this experimental section of the thesis, we depict some measurements and insides
of the first steps of characterizing a chip at IFAE QCT. This section does not enclose
all the processes and information required for the fabrication of an SQC, since it is
a complex and advanced matter done by IFAE QCT group’s researchers. Instead,
a part in the characterization of the inductance of aluminum is explained in the
following chip3.

Figure 4.11: Aluminum (in blue) chip design studied with a dimension of 7.400
mm x 7.400 mm and 20 mm of thickness, with indications of identification of each
structure. Also, a zoom of the A1 structure is shown of size 200 µm x 100 µm.

To estimate the inductance of the structure, we have measured its structure’s
resistance with a four-probe station, with the procedure explained in Section 3.2.
Even though it is required to do the measurements at 4K, we did them at room
temperature since we did not have access to the refrigerator to do the measurements.
Nonetheless, this is valid to estimate the inductance of the system. Proceeding with
the measurements and sending an array of intensities and voltages, a lineal fit is done
using Appendix B.1 to obtain each resistance, obtaining the following experimental
results.

3made by Alba Torras-Coloma in December 2023
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A1 A2 A5 A6 B1 B2 B5 B6 D4

R□

(Ω/□)
3.9357 4.5585 4.3660 4.8562 4.3215 4.2542 4.2909 4.4140 5.0448

uR□

(mΩ/□)
5.7 6.7 5.5 14.9 7.2 7.0 5.8 9.5 13

Lkin□
(pH/□)

4.6052 5.3339 5.1087 5.6823 5.0567 4.9779 5.0209 5.1649 5.9029

uLkin□

(fH/□)
6.7 7.8 6.4 17.5 8.4 8.1 6.7 11.1 15.6

Table 4.1: Square resistance R□, its uncertainty uR□
, the kinetic inductance

Lkin□ and its uncertainty uLkin□
of every structure that has not suffered damage

from fabrication and conservation. The number of squares per structure is 1483.

Even though all the structures were intended to be equal, the experimental results
show the difficulty of controlling the parameters of thin film fabrication. Nonetheless,
using the fact that all structures are equal, we can calculate an average value for the
resistance of a square R̄□ = 4.45± 0.11 Ω/□ and using equation (2.13) to estimate
the kinetic inductance, we obtain that the 20 nm Al has an approximate sheet kinetic
inductance of L̄kin,□ = 5.21± 0.13 pH/□.

This result indicates that our designed parameters can be achieved needing only
77 squares. In the case of the targeted design, we have a space of 30 µm for the
inductance. Since we can produce wires with a width of 75 nm at least, we will be
able to obtain the desired inductance with only ∼6 µm, which is lower than required.
Moreover, the statistical deviation of approximately 2.5% depicts the reproducibility
of the method and the USC regime will be achieved even with a small variation of the
coupling inductance, as it was demonstrated in Figure 4.10. This results demonstrate
that Al wires can be used in order to obtain large inductances and therefore help us
reach the USC regime.





Chapter 5

Conclusions

In this thesis, we have introduced the main concepts behind the technology of super-
conducting quantum circuits. In particular, we have been familiarized with circuit
quantization theory. Moreover, we have presented flux qubits galvanically coupled
to a resonator, as a promising device to achieve the ultrastrong coupling regime of
light-matter interaction.

Intending to study the USC regime, we have derived the Hamiltonians of the
main flux qubits and the coupled 3JJ-LC system. In particular, we have calculated
the eigenenergies and eigenvectors using different numerical methods. These have
proven the computational difficulties within the USC regime.

Moreover, we have provided a calculation of the coupling coefficient of our design
circuit, proving the ability to achieve the ultrastrong coupling regime.

Finally, we have characterized a chip with thin Al wires. Proving that although
aluminum is not a superinductor material, it would be viable to be used to couple a
flux qubit and a resonator and achieving USC.

33





Appendix A

Codes

A.1 Code for solving the spectra of an RF-SQUID

1 PI = np.pi
2 SUP_FLUX_QUANTUM = 2.067833831e-15 #SI
3 E = 1.6021766208e-19 # C
4 Ic = (2*0.04) *1e-6 #mA
5 C = (41+50*0.04) *1e-15 #fF
6 L = 5.5e-9 #nH
7 Ec = E*E/(2*C)
8 beta = 2*PI*Ic*L/SUP_FLUX_QUANTUM
9 f0 = 0.5

10 f = np.linspace (0.49 ,0.51 ,100)
11 h_barra = 1.054571817e-34
12 m = h_barra **2/(8* Ec)
13 Ej = Ic * SUP_FLUX_QUANTUM / (2*PI)
14 omega = 2*Ec/h_barra*np.sqrt (2*Ej/(beta*Ec))
15 theta = np.sqrt(h_barra /(m*omega))
16 max = 30
17

18 def abs_e_iphi(l ,k ):
19 min_kl = np.minimum(k, l)
20 k_fac = np.math.factorial(k)
21 l_fac = np.math.factorial(l)
22 prefactor = np.exp(-theta **2/4) /(np.sqrt (2.0**(k+l)*k_fac*l_fac))
23 eiphi = 0.
24 for i in range(min_kl +1):
25 eiphi += 2**i*np.math.factorial(i)*math.comb(k,i)*math.comb(l,i

)*(-1)**i*theta **(l+k-2*i)*1j**(l+k)
26 return prefactor*eiphi
27

28 def abs_e_menysiphi(l ,k ):
29 abs_e_menysiphi = abs_e_iphi(l ,k )*(-1)**(l+k)
30 return abs_e_menysiphi
31

32 def Hlk(l,k,fru):

35
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33 if l==k:
34 H_lk = (k)*h_barra*omega - 0.5*Ej*(np.cos(2*PI*fru)*( abs_e_iphi

(l,k)+abs_e_menysiphi(l,k))+ 1j*np.sin(2*PI*fru)*( abs_e_iphi(l,k
)-abs_e_menysiphi(l,k)))

35

36 else:
37 H_lk = - 0.5*Ej*(np.cos(2*PI*fru)*( abs_e_iphi(l,k)+

abs_e_menysiphi(l,k))+ 1j*np.sin (2*PI*fru)*( abs_e_iphi(l,k)-
abs_e_menysiphi(l,k)))

38

39 return H_lk
40

41 import matplotlib.pyplot as plt
42 from scipy.optimize import curve_fit
43

44 #Calculations
45 Eground = []
46 Eexcited = []
47 Eexcited2 = []
48 Edif = []
49 EdifJ =[]
50 Edif2 = []
51

52 Hamiltonian = np.zeros ((max ,max), dtype=complex)
53

54 #Hamiltonian construction and diagonalization:
55 for fru in f:
56 for l in range(max):
57 for k in range(max):
58 Hamiltonian.put(max*l+k, Hlk(l,k,fru))
59 Etot_vals , Etot_vects = np.linalg.eigh(Hamiltonian)
60 Eground.append(convert_J_to_GHz(np.sort(Etot_vals)[0]))
61 Eexcited.append(convert_J_to_GHz(np.sort(Etot_vals)[1]))
62 Eexcited2.append(convert_J_to_GHz(np.sort(Etot_vals)[2]))
63 Edif.append(convert_J_to_GHz(np.sort(Etot_vals)[1]-np.sort(

Etot_vals)[0]))
64 EdifJ.append(np.sort(Etot_vals)[1]-np.sort(Etot_vals)[0])
65 Edif2.append(convert_J_to_GHz(np.sort(Etot_vals)[2]-np.sort(

Etot_vals)[0]))
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A.2 Three-junction flux qubit with non-negligible
inductance spectra solver

1 E = 1.6021766208e-19 #SI
2 Flux0 = 2.067833831e-15 #SI
3 Ic = convert_uA_to_A (2*0.1)
4 C = convert_fF_to_F (50*0.1)
5 Csh = convert_fF_to_F (25)
6 Ec = convert_J_to_GHz(E*E/(2*C))
7 Ecsh = convert_J_to_GHz(E*E/(2* Csh))
8 Ej = convert_J_to_GHz(Ic*Flux0 /(2*np.pi))
9 L = convert_nH_to_H (0.4)

10 El = convert_J_to_GHz(Flux0 **2/(4*L*np.pi**2))
11 alpha = 0.55
12 flux_list= np.linspace (0.48, 0.52, 100)
13 drei_jj_Csh = """ branches:
14 - [JJ ,1,4,{},{}]
15 - [JJ ,4,2,{},{}]
16 - [JJ ,3,2,{},{}]
17 - [L,1,3,{}]
18 - [C,4,2,{}]""".format(Ej,Ec,Ej*alpha ,Ec/alpha ,Ej,Ec,El ,Ecsh)
19 drei_JJ_qubit = scq.Circuit(drei_jj_Csh , from_file=False , ext_basis

= ’harmonic ’)
20 drei_JJ_qubit.sym_hamiltonian ()
21 drei_JJ_qubit.var_categories
22 drei_JJ_qubit.external_fluxes
23 drei_JJ_qubit.cutoff_names
24 drei_JJ_qubit.cutoff_ext_3 = 18
25 drei_JJ_qubit.plot_evals_vs_paramvals("$\phi$ 1", flux_list ,

evals_count =3, subtract_ground=True)
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A.3 Three-junction flux qubit with non-negligible
inductance coupled to a resonator spectra solver

1 # Set qubit parameters
2 alpha = 0.55
3 Jc = 2.0 # uA/um^2
4 area = 0.1 # um^2
5 Csh = 25.04 # fF
6 Sc = 50 # fF/um^2
7 Cc = 1.01 # fF
8 # Set LC resonator parameters
9 Lr = 2.95 # nH

10 Cr = 3.46e3 # fF
11

12 # Set coupling
13 Lc = 0.4 # nH
14 EJ = calculate_Ej(Jc, area)
15 Ec = calculate_Ec(Sc * area)
16 Ec_alph = calculate_Ec(Sc * area * alpha + Csh)
17

18 # Now convert the coupling capacitance to Ec in GHz
19 Ec_cc = calculate_Ec(Cc)
20 # Inductive coupling energy
21 ELc = calculate_El(Lc)
22

23 # Resonator energies
24 ELres = calculate_El(Lr)
25 Ecres = calculate_Ec(Cr)
26 # define the circuit
27 flux_res_circuit = """ branches:
28 - [JJ ,0,1,{},{}]
29 - [JJ ,1,2,{},{}]
30 - [JJ ,2,3,{},{}]
31 - [L,3,0,{}]
32 - ["L", 3, 4, {}]
33 - ["C", 4, 0, {}]
34 """.format(EJ, Ec ,
35 EJ , Ec ,
36 alpha * EJ, Ec_alph ,
37 ELc ,
38 ELres ,
39 Ecres)
40

41 fluxres = scq.Circuit(flux_res_circuit , from_file=False ,
42 ext_basis="harmonic")
43 fluxres.external_fluxes
44 fluxres.hamiltonian_symbolic
45 # Set the cutoff values - check names
46 fluxres.cutoff_names
47 fluxres.cutoff_n_1 = 7
48 fluxres.cutoff_n_2 = 7
49 fluxres.cutoff_ext_3 = 18
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50 fluxres.cutoff_ext_4 = 18
51 fluxvals = np.linspace (0.48 , 0.52, 35)
52 spectrum = fluxres.get_spectrum_vs_paramvals(" 1 ", fluxvals ,

evals_count =3,
53 subtract_ground=True ,

get_eigenstates=True);
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A.4 Code g calculation

1 """
2 Calculates the coupling coefficient of the circuit:
3 3JJ qubit inductively coupled (by sharing an inductance) to a

resonator
4

5 Author: Alba Torras -Coloma
6 @ QCT
7 """
8 def build_hamilt_without_Vi(n_max_charge , n_max , alpha , gamma , EC,

EJ , beta_L):
9 """ Builds all hamiltonian terms that do not contain f"""

10

11 # Matrix sizes for charge and ho basis
12 N_tot = 2 * n_max_charge + 1
13 N_ho = n_max + 1
14

15 # Consider Csh
16 a_fact = alpha + gamma
17

18 # Charge identity matrices
19 idty_charge = sparse.identity(N_tot , format=’csr’)
20 # Harmonic oscillator identity
21 idty_ho = sparse.identity(N_ho , format=’csr’)
22

23 # Build Tf matrix
24 Nsqrt_matrix = build_Nsqrt_charge_matrix(N_tot , n_max_charge)
25 Tf = (EC / 2) *build_Tf_matrix_3JJ(Nsqrt_matrix , idty_charge ,
26 idty_ho , a_fact)
27

28 # Build Ti matrix
29 N_charge_matrix = build_N_charge_matrix(N_tot , n_max_charge)
30 a_plus_adagger = build_ho_a_adagger_matrix(N_ho)
31

32 sum_inverse_alpha = (1 + 2 * a_fact)/a_fact
33 prefactor_p_matrix = (EJ / (4 * beta_L * EC)) /

sum_inverse_alpha
34

35 ho_p_matrix = a_plus_adagger * 1j * (prefactor_p_matrix ** (1 /
4))

36

37 Ti = - EC * build_Ti_matrix_3JJ(N_charge_matrix , idty_charge ,
38 ho_p_matrix , a_fact)
39

40 # Build TV matrix
41 N_ho_matrix = build_N_ho_matrix(N_ho)
42 prefactor_TV = np.sqrt(EC * EJ * sum_inverse_alpha / beta_L)
43 TV = build_TV_matrix_3JJ(idty_charge , N_ho_matrix) *

prefactor_TV
44

45 # Build Vf matrices
46 exp_iphi_matrix = build_exp_i_phi_matrix(N_tot)
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47 prefactor_Vf = - EJ / 2
48 Vf = prefactor_Vf * build_Vf_matrix_3JJ(exp_iphi_matrix ,
49 idty_charge ,

idty_ho)
50

51 return Tf + Ti + TV + Vf
52

53 def build_Vi_without_f(n_max_charge , n_max , Ec, beta ,
54 a_fact):
55 N_ho = n_max + 1
56 N_tot = 2 * n_max_charge + 1
57

58 # Build Vi matrices (inside loop for f)
59 EP = build_EP_matrix_3JJ(N_ho , Ec , Ec, beta ,
60 a_fact)
61 exp_iphi_matrix = build_exp_i_phi_matrix(N_tot)
62 Vi_1st_part = build_1st_Vi_without_2pif_3JJ(exp_iphi_matrix , EP

)
63

64 return Vi_1st_part
65

66 def diagonalize_hamiltonian(Hamiltonian , en_levels):
67 """
68 Diagonalizes the Hamiltonian and returns the states ,

eigenenergies and
69 the spectrum
70 Args:
71 Hamiltonian: hamiltonian of the system
72 en_levels: number of energy levels to be calculated.
73

74 Returns:
75

76 """
77 energies , states = linalg.eigsh(Hamiltonian , k=en_levels , which

=’SA’,
78 return_eigenvectors=True)
79 states = np.matrix.transpose(states)
80 states = [x for y, x in sorted(zip(energies , states))]
81

82 energies = np.sort(energies)
83 energies = np.array(energies) # States reordered in previous

line
84 states = np.array(states)
85

86 spectrum = []
87 for i in range(1, en_levels):
88 spectrum.append(energies[i] - energies [0])
89

90 spectrum = np.asarray(spectrum)
91

92 return energies , spectrum , states
93

94 def expected_value(matrix , state_left , state_right):
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95 """
96 Expected value phi_L (in h.o. basis), recall phi_L =
97 (a + a_dagger)*prefactor
98

99 state_left - row vector
100 state_right - column vector
101 """
102

103 left_times_matrix = np.dot(state_left , matrix)
104 exp_val = np.dot(left_times_matrix , state_right)
105

106 return exp_val
107

108 def build_phi_lamb_matrix(Ec, Ej, alpha , beta , n_max , n_max_charge)
:

109 """
110 Builds the complete phi matrix needed to obtain the coupling

coefficient
111 Args:
112 Ec: charging energy
113 Ej: current energy
114 alpha: ratio small -reference junction
115 beta: ratio inductances
116 a_matrix: annihilation operator
117

118 Returns:
119 """
120 size_ho = n_max + 1
121 size_charge = 2 * n_max_charge + 1
122

123 charge_idty = sparse.identity(size_charge , format=’csr’)
124 alpha_fact = (2* alpha + 1) / alpha
125 #prefactor = ((2*Ec/Ej) * alpha_fact * beta) ** (1/4)
126 prefactor = (beta * Ec * alpha_fact / (4 * Ej)) ** (1/4)
127 a_adagger_matrix = build_ho_a_plus_adagger_matrix(size_ho)
128

129 phi_matrix = sparse.kron(sparse.kron(charge_idty , charge_idty),
130 a_adagger_matrix) * prefactor
131

132 return phi_matrix.toarray ()
133

134

135

136

137 n_max = 20 # Max N for harmonic oscillator states
138 n_max_charge = 10 # Max N for Cooper pair states
139 en_levels = 6 # Maximum number of energy levels computed
140

141

142 # Define the main variables of the system
143 Lc = 0.37 # nH
144 Lr = 3.24 # nH
145 alpha = 0.53
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146 area = 0.065 # um^2
147 Jc = 3.0 # uA/um^2
148 Sc = 70 # fF/um^2
149 Csh = 50 # fF
150

151 CJ = Sc * area
152

153 gamma = Csh / CJ # This will go with alpha (capacitive terms)
154 a_fact = alpha + gamma
155

156 Ec = calculate_Ec(CJ) * 8
157 Ej = calculate_Ej(Jc, area)
158 beta_Lc = calculate_beta_L(Lc, Jc , area)
159 beta_Lr = calculate_beta_L(Lr, Jc , area)
160

161 sum_inv_beta = (1/ beta_Lr) + (1/ beta_Lc)
162

163 f = 0.5
164 # Maybe calculating it at 0.5 is enough
165 # f_range = np.linspace (0.49, 0.51, 10)
166

167 # Build the Hamiltonian with all terms
168 Hamilt_without_vi = build_hamilt_without_Vi(n_max_charge , n_max ,

alpha ,
169 gamma , Ec, Ej , 1/

sum_inv_beta)
170

171 Vi_prefactor = - alpha * Ej / 2
172 Vi_1st_part = build_Vi_without_f(n_max_charge , n_max , Ec, 1/

sum_inv_beta ,
173 a_fact)
174

175 Vi = Vi_prefactor * (np.exp(1j * 2 * np.pi * f) * Vi_1st_part +
176 np.exp(-1j * 2 * np.pi * f) * Vi_1st_part.

conj().T)
177

178 Hamiltonian = Hamilt_without_vi + Vi
179

180 # Diagonalize the inductance + qubit system
181 energies , spectrum , states = diagonalize_hamiltonian(Hamiltonian ,

en_levels)
182

183 #print(states [0])
184 #print(spectrum [0])
185 #print(np.dot(states [0], states [1]. conj().T))
186

187 # Compute gx, gz
188 # Build the operator matrix
189 phi_matrix = build_phi_lamb_matrix(Ec, Ej , a_fact , 1/ sum_inv_beta ,

n_max ,
190 n_max_charge)
191 dim = 6
192 overlaps = np.zeros ((dim ,dim), dtype=np.complex_)
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193 for i in range(dim):
194 for j in range(dim):
195 overlaps[i, j] = expected_value(phi_matrix , states[i],
196 states[j].conj().T)
197 print(overlaps)
198

199 alpha_fact = (2 * a_fact + 1) / a_fact
200 prefactor_g = (Ej / (2 * beta_Lr)) * ((2 * Ec / Ej) * alpha_fact *
201 beta_Lr) ** (1 / 4)
202 g = prefactor_g*np.absolute(np.linalg.det(np.array ([[ overlaps [0,0],

overlaps [0,1]],[ overlaps [1,0], overlaps [1 ,1]]])
203 print("g = ", g)



Appendix B

Experimental results treatment

B.1 Linear fit of the measurements

1 import numpy as np
2 from sklearn.linear_model import LinearRegression
3

4 # Example data (replace this with your own data)
5 current = np.array(I_list)
6 voltage = np.array(v_list)
7

8 # Reshape the data if needed
9 current = current.reshape(-1, 1)

10 voltage = voltage.reshape(-1, 1)
11

12 # Create and fit the linear regression model
13 model = LinearRegression ()
14 model.fit(current , voltage)
15

16 # Extract the slope (resistance) and intercept from the model
17 resistance = model.coef_ [0][0]
18 intercept = model.intercept_ [0]
19

20 # Calculate the uncertainty in the slope (resistance)
21 coefficients , cov_matrix = np.polyfit(current.flatten (), voltage.

flatten (), 1, cov=True)
22 resistance_uncertainty = np.sqrt(np.diag(cov_matrix))[0]
23

24 # Print the estimated resistance and intercept along with
uncertainty

25 print(f"Estimated Resistance (R): {resistance} ohms {
resistance_uncertainty} ohms")

26 print(f"Intercept: {intercept}")
27

28 # Make predictions using the model
29 predicted_voltage = model.predict(current)
30

45
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31 #Plot the results
32 import matplotlib.pyplot as plt
33

34 plt.scatter(current , voltage , label=’Actual Data’)
35 plt.plot(current , predicted_voltage , color=’red’, label=’Linear

Regression ’)
36 plt.xlabel(’Current (A)’)
37 plt.ylabel(’Voltage (V)’)
38 plt.legend ()
39 plt.show()
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