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A B S T R A C T

This thesis introduces Superconducting Qubits as a platform for Quan-
tum Computing. It also explains the theory needed to study and un-
derstand these circuits, highlighting the use of Circuit QED Theory to
obtain their Hamiltonian. The main idea is to make the physical cir-
cuit more complex to enhance its properties. The attribute highlighted
in this work is coherence time, which corresponds to the time dur-
ing which the qubit stays in a well-defined quantum state. Different
circuits that show longer coherence times are presented and their pa-
rameters are optimized. Moreover, the main decoherence mechanism
is identified by means of ScQubits simulations and different strategies
are presented in order to minimize its effect.

Furthermore, the concept of linear quantum crosstalk is introduced
and its appearance in the Hamiltonian is justified. The implications
that this effect has on the potential energy, coherence time and fre-
quency of the qubit are studied. This thesis also presents more com-
plex circuit geometries capable of vanishing linear quantum crosstalk.
The elimination of this effect improves the controlability of the sys-
tem, giving the researcher the ability to tune independently different
parameters of the Hamiltonian.

The role of parameter asymmetry is presented and compared in
two circuit configurations. This thesis shows how asymmetry leads
to nonlinear quantum crosstalk and how it alters the Hamiltonian of
the qubit. Special emphasis is put on the deviations caused by low
asymmetry.

This thesis culminates on the proposition of a qubit geometry which
unifies the best features of the different circuits studied. Nevertheless,
this superconducting circuit is not studied in detail and, therefore,
could be a promising continuation to this line of work.
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1
I N T R O D U C T I O N

1.1 introduction to quantum computing

It is undeniable that digital computation has shaped the society that
we live in, becoming the base of the Information Era and the driv-
ing force behind the Fourth Industrial Revolution [1]. However, the
reduction of size of transistors, a key element in the digital revolu-
tion, is reaching its physical limitations and some experts are already
declaring Moore’s experimental Law [2] as dead. Considering both
the predicted digital decay and inherent limitations to solve relevant
NP-hard problems, there is a need for a new type of computation.
Taking advantage of the deep understanding of Quantum Mechanics
and Information Theory, Benioff [3] theorized and published a lattice
system of spins equivalent to a Turing Machine. In other words, he
proposed a quantum system that was able to compute via unitary
matrix evolution, which is the cornerstone of Quantum Mechanics.
The idea of constructing a Quantum Computer based on unit blocks
that were coupled to each other began to take root, until a few years
later DiVincenzo [4] proved that quantum gates which operate on two
qubits are sufficient to construct a general quantum circuit. A qubit,
or quantum bit, is the fundamental unit of quantum information. Sys-
tems built from qubits have a very broad range of applications in
quantum communication [5, 6], quantum simulation [7, 8], quantum
computing [9, 10] and quantum cryptography [11–13].

1.2 qubits and superconducting circuits

Generally, a physical system consists of multiple quantum states. If
we constrain the Hilbert space to the one spanned by two states, then
this system could behave as a qubit. The most important requiere-
ments for a qubit [14] are the following: the qubit has access to the
Hilbert space spanned by two orthogonal eigenstates, projective mea-
surements and unitary operations can be implemented on the qubit
and the qubit can be reset to a given initial state. In addition, building
an operational quantum computer requires controllable qubit-qubit
interactions. From a practical perspective, a qubit should have a co-
herence time, i.e. the time during which the qubit stays in a well-
defined quantum state, longer than the computational time needed
for a certain protocol, such as a quantum algorithm.
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2 introduction

The coherence time is heavily influenced by the coupling between
the qubit and its environment. The main decoherence processes are
the dissipation of energy, heating by external fluctuations and de-
phasing of eigenstates leading to random fluctuations of the qubit
frequency. These are the reasons why a qubit has to be as isolated as
possible from its environment to maintain superpositions and entan-
glement. Furthermore, the system has to be at very low temperatures
(in the range of the mK for superconducting circuits). These values
correspond to the quantum regime (hν ≫ kbT), with ν the charac-
teristic frequency of the qubit. The reason behind is that the qubit
tends to a state in thermal equilibrium with the environment. If the
system is not in the quantum regime, thermal fluctuations become
non-negligible and overrun quantum fluctuations.

A considerable number of physical systems may behave as qubits:
photons using their polarization or frequency, electrons using their
spin or position in two quantum wells [15], nuclei with their an-
gular momentum [16], atoms [17], ions [18], color centers [19] and
molecules [20]. However, in this thesis the system that Orlando [21]
proposed is studied: the Persistent-Current Qubit (PCQ).

Roughly speaking, a superconducting circuit is a circuit constructed
with superconducting materials. A circuit exhibits quantum phenom-
ena when it behaves as a quantum system. These properties are en-
ergy quantization, entanglement via hybridization of quantum states,
unitary evolution and quantum superposition. All these properties
are exhibited through quantum observables such as magnetic flux,
charge, electric current and voltage. A commonly used strategy is to
map a microscopic and quantized degree of freedom to a macroscopic
one that is easier to measure. In the case at study, PCQ’s orthogo-
nal eigenstates correspond to current flowing clockwise and counter-
clockwise.

Because of the non-linearity of the circuit components used to build
PCQs, these circuits exhibit an anharmonic energy spectrum. There-
fore, the energy of the transition between the ground state |0⟩ and
first excited state |1⟩ is not related by an integer to the transitions to
the rest of eigenstates and the subspace made from its combination
becomes isolated. Thus, the circuit behaves as an artifical two-level
atom.
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1.3 advantages and disadvantages of superconducting

circuits as qubits

On the one hand, PCQ’s flexibility allows to change the Hamiltonian
of the system just modifying parts of an electrical circuit. Therefore,
in the bigger picture, the advantages that this approach offers are the
scalability of the system and the tunability of its components both at
fabrication and via external magnetic fluxes.

On the other hand, one of the few disadvantages of PCQ versus
other quantum computers, such as Rydberg atoms [22], is that each
element of the circuit is not identical. Therefore, the effects on the po-
tential of the system caused by slightly different circuit components
should be considered. Nevertheless, PCQ’s biggest disadvantage is de-
coherence.





2
O B J E C T I V E S

The main objective of this thesis is to gain a better understanding of
how a superconducting qubit works in order to optimize it. Specif-
ically, this thesis aims to enhance the qubit in the following areas:
improving its coherence time, understanding quantum crosstalk to
correct it, and studying the effects of junction asymmetry. More specif-
ically, the objective is to make the physical qubit more robust by sim-
plifying its Hamiltonian. This should result in better properties such
as longer coherence times and greater control of the qubit.

The specific objectives are the following:

• Utilize circuit QED Theory to obtain the Hamiltonians of differ-
ent circuits.

• Understand qubit decoherence and noise and how to minimize
it.

• Determine the effects of having N big Josephson Junctions in a
qubit and how it relates to the Fluxonium qubit limit.

• Understand the effects of Quantum Crosstalk and the need to
calibrate it in order to operate the qubit.

• Model analytically the asymmetry of junctions to understand
its effects on the potential energy of the qubit.

Moreover, this thesis has another objective which is not directly
linked to the main one:

• Act as an introduction to the field of Quantum Hardware and
serve as a guide for the reader to build fundamental knowlegde
about PCQs.

5





3
T H E O R E T I C A L B A C K G R O U N D

The objective of this Chapter is to provide the necessary review of the
theory to mathematically model the dynamics of a superconducting
qubit through its Hamiltonian. Special emphasis has been given to the
coherence time due to the key role that plays in quantum computing.
This chapter is built from the original Quantum network theory from
Yurke and Denker [23], the course from Devoret [24], the lecture from
Girvin at the Quantum Machines Summer School of Les Houches
[25], the book of García-Ripoll [14] and the in-depth explanations of
Wendin and Shumeiko’s review [26].

3.1 introduction to circuit qed theory

The dynamics of a system are encompassed in its Hamiltonian and
the properties of the system can be predicted through the analysis
of this mathematical object. This section defines a method that con-
sistently builds Hamiltonians from known solutions in the form of
a set of differential equations, which are found using the classical
Kirchoff’s Laws.

First of all, each circuit element ”breaks” the circuit in 2 separate Notice that a branch
flux equals to the
phase drop across a
circuit element.

nodes. All distinct nodes of the circuit have an associated flux variable
Φj. A branch is defined as the connection between two consecutive
nodes. Then, a difference flux Φj−i ≡ Φj − Φi is associated to each
branch. The first quantum effect of the circuit is fluxoid quantization
[27, 28]: for each closed loop the total number of fluxoids must be
proportional to an integer number of flux quanta Φ0 := h

2e . A closed
loop that is thread by an external flux Φext and is formed by the set
of {αi} branches must satisfy:

∑
{αi}

Φi + Φext = nΦ0. (3.1)

Once the branch fluxes are defined and the fluxoid quantization Via fluxoid
quantization,
inherent degrees of
freedom can be

”swapped” by
tunable external
fluxes.

is applied, Kirchoff’s Laws can be used via current conservation for
each node. This process yields a set of differential equations which
are solution to the Euler-Lagrange Eqs. of motion (3.2) for all flux
variables:

∂L
∂Φi

− d
dt

∂L
∂

.
Φi

= 0. (3.2)

7



8 theoretical background

Given the Lagrangian density L, the node charges qi are found as
the canonically conjugate momenta of the fluxes, using qi =

∂L
∂
.
Φi

. Then,

the Hamiltonian is found using the Legendre transformation:

H(Φ, q) = ∑
i

qi
.

Φi −L(Φ,
.

Φ). (3.3)

In order to obtain the Hamiltonian as a proper quantum operator,
the canonical variables are promoted to canonical operators which
satisfy the commutation relations:

[Φ̂i, q̂j] = ih̄δij, (3.4)

where i is the imaginary unit, h̄ is the reduced Plank constant and
δij is the Kronecker delta. Using this procedure, the Hamiltonian of
any PCQ can be obtained. The only ingredient missing is the relation
between the magnetic flux and the current intensity I(Φ), which is
circuit-element dependent and is explained in the following section.

3.2 circuit elements

This section contains a brief explanation of the building blocks of
a PCQ: capacitors, inductors and Josephson Junctions. These circuit
elements are gathered in Figure 3.1. Since we consider the size of
the circuit elements to be much smaller than the wavelength of the
current and voltage oscillations1, the lumped-element circuit approx-
imation [29] can be applied. In this regime, both current and voltage
have no spatial dependance and the circuit elements can be treated
like a point.

(a) Capacitor. (b) Inductor. (c) Josephson Junc-
tion.

Figure 3.1: Diagrams of circuit elements.

capacitor 3 .1a : Classically, a capacitor consists of two plates
which accumulate charge of opposite sign. Therefore, an electric field

1 These oscillations are of the order of microwaves, which correspond to wavelenghts
in the range of centimeters.



3.2 circuit elements 9

is generated which is proportional to the charge stored. The differ-
ential form of this relation corresponds to equation I = C dV

dt = C
..
Φ,

where C is the capacitance.

Work needs to be done in order to charge the capacitor, which is
stored as electrostatic energy. If the capacitor is a superconductor,
then the energy E = 4ECn2 will depend on the number of extra
Cooper pairs n that are stored in the capacitor and on the charac-
teristic capacitive energy EC = e2

2C , with e the charge of an electron.

Since the charge of the capacitor is q = −2en, when the charge
and the flux are promoted to operators in the quantization procedure,
the number of Cooper pairs is promoted to a number operator with

q̂ = −2en̂. Thus, a capacitor will add Ĥcap = Ca
2

.̂
Φ

2

a =
q̂2

a
2Ca

= 4ECa n̂2
a to

the Hamiltonian.

inductor 3 .1b : Classically, the inductor is a circuit element that
acts as a magnetic flux inertia. The relationship between its current
intensity and flux corresponds to I = Φ

L , where L is the inductance
of the inductor. Since it resists to changes in its magnetic flux, work
has to be done in order to change this variable and it stores magnetic
energy, which is proportional to the magnetic flux.

Using superconducting materials adds kinetic inductance [21], which
affects the value of L. In the quantization procedure, the magnetic flux
promotes to an operator and, therefore, an inductor will add the term
Ĥind = 1

2Li
Φ̂2

i to the Hamiltonian.

josephson junction 3 .1c : The Josephson Junction stands out
because its behaviour is purely quantum mechanical. Roughly, a Joseph-
son Junction consists of two superconductors separated with an insu-
lator such that Josephson Tunneling can occur. This effect, which was
predicted by Josephson [30], reaffirmed by Anderson and Rowell [31]
and later confirmed by Giaever [32], consists of the tunneling from
one superconductor to the other of the whole macroscopic wavefunc-
tion of the two superconductors on each side. This results in a coher-
ent coupling between the two superconductors and the existence of
a relative phase φi =

2π
Φ0

Φi between them, with Φi being the effective
magnetic flux across the junction.

This effect has been widely studied (see [33, 34]) but only the prop-
erties that are useful for PCQ will be discussed. In the lumped element
approximation, the current intensity flowing through a Josephson
Junction corresponds to the equation I = IC sin φi, with IC the critical
current of the Josephson Junction. The critical current corresponds to
the maximum value of current intensity in which the system has a
flow of electrical supercurrent without a voltage drop.



10 theoretical background

Considering that a Josephson Junction also has capacitive energy,
after the quantization procedure its contribution to the Hamiltonian

corresponds to ĤJ J =
q̂2

i
2CJ

− EJ cos
(

2π
Φ0

Φ̂i

)
, where EJ = ICΦ0/2π is

the characteristic Josephson energy.

For small currents, a Josephson Junction can be considered a tun-

able inductor with inductance LJ = Φ0

/
2π IC

√
1 −

(
I

IC

)2
. It is also

worth to state that IC depends on the size of the Josephson Junction,
making this circuit element adjustable by design. Also, a Josephson
Junction is highly sensitive to external magnetic fluxes.

The terms of the Hamiltonian which depend on the magnetic fluxes
Φ can play the role of a potential U(Φ). In the Josephson Junction’s
case and due to the cosine, for small fluxes (φ ≪ 1) this potential
will be harmonic to first order. Nevertheless, as φ increases, more cor-
rections are added. Therefore, the Josephson Junction generates an
anharmonic potential that isolates the ground state and the first ex-
cited from the rest of the eigenstates, which defines a PCQ, and gives
the ability to the researcher to tune parameters of the Hamiltonian of
the system via external fluxes.

3.3 coherence time

Fermi’s Golden Rule (3.5) is typically used to estimate the coherenceDerived from
time-dependent

perturbation theory,
it was first

formulated by Dirac
[35, 36] and gained
its importance due

to Fermi [37].

time of a qubit. This equation describes the transition rate from an
initial state i to a final state f and the relaxation time is obtained as
the inverse of the transition rate Γ1i→ f :

1
T1

≡ Γ1i→ f =
1
h̄2 |⟨ f |Ĥ′|i⟩|2S(ωi f );

1
T2

≡ Γ2i→ f =
Γ1i→ f

2
+ Γϕ. (3.5)

Therefore, the relaxation time depends on the matrix element of the
Hamiltonian Ĥ′ of the decoherence mechanism and the noise power
spectral density S(ωi f ) associated to the frequency ωi f . To be pre-
cise, T1 corresponds to the lifetime of the qubit, whereas coherence
time is defined as T2 using Eq. (3.5). Therefore, the coherence time
depends both on the lifetime of the state of the qubit and on the pure
dephasing rate Γϕ, which makes the qubit frequency fluctuate and ef-
fectively reduces the coherence time of the qubit. As justified in [38], if
the qubit is driven under certain conditions of external flux, pure de-
phasing may be corrected. For simplicity, these conditions have been
used on the simulations and, thus, the tendencies of T1 determine the
tendencies of the coherence time.

When different decoherence mechanisms are considered, the in-
verse effective relaxation time depends on 1

T1eff
= 1

2 ∑i
1

T1i
, where T1i is

the relaxation time from the ith decoherence mechanism.



4
S U P E R C O N D U C T I N G Q U B I T S

This Chapter contains the body of the work carried out in this the-
sis. We study several superconducting qubits by analyzing the advan-
tages and disadvantages, from the Radio Frequency Superconduct-
ing Quantum Interference Device (RF-SQUID) to the asymmetric Gra-
diometric Qubit. With each iteration, the circuit becomes physically
more sophisticated but contains more design-driven performance en-
hancements, implying in longer coherence times and more controla-
bility. Even though it may seem counter-intuitive, this Chapter starts
with the deduction of the Hamiltonian of a generalized circuit and
includes a generalized proof for the conditions required to display a
double well. Then, more specific and simpler cases are studied im-
proving an aspect of the qubit in each iteration.

4.1 c-shunted n-josephson junction flux qubit

The generalized case of a Flux Qubit is made of N big Josephson Junc- The characteristic
energies of a
Josephson Junction
depend on its
physical size. A ratio
of α implies in a
Josepshon energy of
αEJ and a charging
energy of EC/α.

tions in series which are connected to a smaller Josephson Junction
(with a ratio of physical area of α). The α-Junction is also connected
in parallel to a capacitance, as it can be seen in Figure 4.1a.

(a) General diagram. (b) Equivalent diagram in the Fluxonium
limit.

Figure 4.1: Diagrams of a C-Shunted N Josephson Junction Flux Qubit.

To find the Hamiltonian of the system, the nodes have to be identi-
fied. Node 1 can be arbitrarily placed between the α-Junction and the
first big Josephson Junction. Node 2 can be placed between the first
and second big Josephson Junction and this process can be repeated
until the node N + 1, which is placed between the N Junctions and

11



12 superconducting qubits

the α-Junction. The branch nodes are ΦJ Ji = Φi − Φi−1 for the big
Junctions and ΦJ Jα = Φ1 − ΦN+1 for the α-Junction. Since the num-
ber of fluxoids is quantized, all branch fluxes are related to each other
and to the external flux with ∑N

i=i ΦJ Ji + ΦJ Jα + Φext = nΦ0.

In this case, it is useful to apply fluxoid quantization for the branch
flux of the α-Junction. Therefore, applying Kirchoff’s Laws and the
relations Φ = f (I) of Sec. 3.2, the system must obey:

CJ
..
ΦJ Ji + IC sin φJ Ji = CJ

..
ΦJ Ji+1 + IC sin φJ Ji+1

CJ
..
ΦJ JN + IC sin φJ JN = (αCJ + Csh)

..
ΦJ Jα + αIC sin φJ Jα.

(4.1)

The Lagrangian of the system is obtained integrating Eqs. (4.1) with
respect to time and knowing that they all obey Eq. (3.2):

L =
N

∑
i=1

CJ

2
.

Φ2
J Ji +

αCJ + Csh

2

( N

∑
i=1

.
ΦJ Ji

)2

+
N

∑
i=1

EJ cos
(

2π

Φ0
ΦJ Ji

)
+ αEJ cos

(
2π

Φ0

{ N

∑
i=1

ΦJ Ji + Φext

})
.

(4.2)

Fluxoid quantization has been taken into account to write ΦJ Jα as
a function of the rest of magnetic fluxes. The conjugate momenta
qi =

∂L
∂
.
Φi

are defined in Eq. (A.1), where Ceq = αCJ + Csh. Therefore,

the matrix can be inverted for every N to obtain the functions
.

Φ(q),
which correspond to Eqs. (A.2), and then they can be substituted in
the Legendre transformation Eq. (3.3) to obtain the Hamiltonian:

H = T(q) + U(Φ) =
1

2CJ

N

∑
i=1

q2
J Ji −

1

2Ceq
( CJ

Ceq
+ N

)2

( N

∑
i=1

qJ Ji

)2

−
N

∑
i=1

EJ cos
(

2π

Φ0
ΦJ Ji

)
− αEJ cos

(
2π

Φ0

{ N

∑
i=1

ΦJ Ji + Φext

})
,

(4.3)

where T(q) is the equivalent of the kinetic energy and U(Φ) the
equivalent of the potential energy. The in-depth deduction can be
found in Appendix A.1. With the relations obtained there, this same
Hamiltonian could have been constructed as the sum of the contribu-
tion of every circuit element, which are described at Section 3.2, and
taking into account fluxoid quantization.
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4.1.1 The double-well potential and a necessary condition for a N-Josephson
Junction Flux Qubit

Due to the Josephson Junction terms of the Hamiltonian, its poten-
tial is intricate. Nevertheless, when Φext is near Φ0/2 the potential
energy U(Φ) becomes a double-well (see Figure 4.2) along a defined
path of the potential hypersurface. When the Hamiltonian is diago-
nalized, the two states with lower energy of the computational basis
{|0⟩ , |1⟩} correspond to linear combinations of wavefunctions situ-
ated on the left and right wells {|L⟩ , |R⟩}. The entire circuit can be
therefore modeled as a two-level system and act as a qubit. Moreover,
the basis of the wells corresponds to current circulating clockwise or
counterclockwise and, therefore, can be directly measured.

(a) Φext = Φ0/2. (b) Tilted potential (Φext = 0.52 · Φ0).

Figure 4.2: Double-well potential and wavefunctions of the first eigenstates.
Achieved with the simulation of a typical 3-Josephson Junction

Qubit. Obtained with code from A.2.

This section proves one general necessary geometric condition for
a double well to exist. The potential minima satisfies ∂(U/EJ)

∂Φi
= 0.

Taking Φext = Φ0/2 and considering the semi-classical approxima-
tion where phases are scalar variables, then the following expression
must be true: − sin φi + α sin ∑N

i=1 φi = 0.

Since this equality must be satisfied for each big Josephson Junc-
tion, then at the minima of the potential all the fluxes are equal
φi = φ∗. Using the fact that Chebyshev polinomials of degree N − 1
satisfy equation sin(Nx) = sin(x)UN−1(cos(x)), then the minima con-
dition equals to UN−1(cos φ∗) = 1

α . In the interval between [−1, 1],
UN−1(x) takes the value N as its maximum value at x = 1, as proven
in [39]. Therefore, because of the range of the cosine, the minima con-
dition becomes 1

N < α. This sets a geometric condition that the circuit
must abide in order to be able to obtain a double-well potential.
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4.2 the rf-squid

This section contains the first superconducting circuit of this thesis
that has been used as a qubit. The results shown are widely known
and, therefore, this section serves as a starting point from which the
circuit’s properties will be enhanced in later sections.

Historically, one of the first candidates of a superconducting qubit
was the RF-SQUID. Invented in 1964 and presented in 1967 by Silver
and Zimmerman [40], the RF-SQUID consists of a Josephson Junction
shunted by a large inductance. In other words, a RF-SQUID corre-
sponds to the circuit diagram 4.1a with N = 0 and an inductance
instead of a chain of big junctions. Therefore, its Hamiltonian corre-

sponds to Ĥ =
q̂2

L
2Ceq

+
Φ̂2

L
2L − EJ cos

(
2π
Φ0

{
Φ̂L + Φext

})
, which is derived

from Eq. (4.3) and where the index and ratio α have been dropped
because there is only one type of Josephson Junction. The detailed
deduction is in the Annex A.2.

Due to the high sensitivity to magnetic fluxes, the RF-SQUID has
a broad range of applications in the biomedic field [41] and in mag-
netic property measurement systems [42]. Nevertheless, for Quantum
Computing it has been proven to show some limitations. To maintain
a double-well potential, large Josephson energies EJ must be achieved.
To achieve a high enough EJ , a large inductance of the qubit loop
is needed. Therefore, using conventional superconductors, the super-
conducting loop requires a relatively big area, which makes the qubit
more sensitive to the environment and reduces its coherence time [26].
This drawback can be solved using additional Josephson Junctions as
inductors instead of geometric inductors, thus reducing the suscepti-
bility to noise. This change motivated the creation of the 3-Josephson
Junction Flux Qubit [43] and, later on, the Fluxonium [44].

4.3 3jj flux qubit with tunable asymmetric x loop

This section describes a circuit which achieves longer coherence times
than the RF-SQUID. Starting from the widely studied 3-Josephson Junc-
tion circuit, this thesis implements an equivalent asymmetry model to
the one in [45], expanding the study of this effect. Moreover, we then
find the main decoherence mechanism via simulations in ScQubits
and optimize the parameters of the circuit in order to obtain longer
coherence times.

The flux qubit was first studied by Orlando et al. [21]. It is formed
by four Josephson Junctions (see Figure 4.3): c and d form a closed
loop (X-loop), which behaves as an effective α-Junction, and a and b
close the other loop (Z-loop). External fluxes (Φx, Φz) are thread to
tune the properties of the system.

https://scqubits.readthedocs.io/en/v4.1/
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Figure 4.3: Diagram of a 3 Josephson Junction Flux Qubit.

To later simplify the potential to obtain an expression similar to the The Z asymmetry
would be equivalent
to a circuit with
additional α and α′

Josephson Junctions.
This would result in
a potential with
more asymmetric
minima.

RF-SQUID, it is useful to utilize the critical currents αIa,b = (Ic + Id)/2.
Considering the asymmetry ratio of the X loop γx = Ic

Id
=

EJc
EJd

then

EJc = 2αγx
1+γx

EJ and EJd = 2α
1+γx

EJ with EJ = EJa = EJb. The Joseph-
son Junctions of the Z loop could also be asymmetric, but its effect
would only appear as a scaling factor before the corresponding cosine
term in the potential. The 3-Junction Qubit potential can be found by
adding the contributions of each circuit element. Using flux quanti-
zation, some trigonometry and a change of variables, the following
potential is obtained:

U(φ) = −EJ

[
cos (φ1) + cos (φ′

2) + 2αA cos
(

φx

2

)
×

cos
(

φ′
2 − φ1 − φz +

φx

2
− β

)]
,

(4.4)

where the asymmetry is contained in A =

√
1 +

(
γx−1
γx+1

)2
tan2

(
φx
2

)
and in the phase offset β = atan

((
γx−1
γx+1

)
tan

(
φx
2

))
. φx = 2π

Φ0
Φx and

φz = 2π
Φ0

Φz correspond to the reduced external fluxes. The interme-
diate steps can be found in A.3. Figure 4.4 corresponds to the graph-
ical representation of the potential for the symmetric case γx = 1.
Figure 4.4a showcases how a Z external flux of φz = π produces a
double-well potential, with its minima at the ”bowtie” shaped forms,
corresponding to the double well of Figure 4.2a. Figure 4.4b shows
how the double-well can be tilted using φx ̸= 0, similar to the one
obtained in Figure 4.2a.

It is worth noticing that the argument of the last cosine contains
both external fluxes in the form of φx/2− φz. Because of the geometry
of the system, the external fluxes are not separable and the flux of
the X loop affects the working point of φz. This effect is known as
quantum crosstalk and explains why a non-zero φx tilts the double-
well in Figure 4.4b. From a practical point of view, this circuit could
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(a) φx = 0. (b) φx = 0.025 · 2π.

Figure 4.4: Potential energy of a 3 Josephson Junction Flux Qubit. The
parameters used are EJ/h = 20 GHz, α = 0.6, γx = 1 and

φz = π. Obtained with A.3.

work as a tunable qubit, but quantum crosstalk would need to be
corrected.

The external flux Φx additionally modifies the prefactor of the last
cosine. This effect corresponds to the effective tuning of the α parame-
ter, which translates into α̃ = 2α cos

( φx
2

)
. When the asymmetry ratio

γx ̸= 1, then another dephasing β factor appears and the external
flux of the X loop has an additional effect on the argument of the last
cosine. Therefore, the effect of quantum crosstalk is accentuated in a
nonlinear way. Moreover, because of the square root extra factor in A,
when the asymmetry γx is bigger, then the crosstalk effect is ampli-
fied due to a larger prefactor multiplying the last cosine, effectively
producing α̃′ = Aα̃.

For nearly symmetrical X loop Josephson Junctions (γx → 1), a
Taylor expansion of the potential until second order can be performed
to yield:

U(φ) ≈ −EJ

[
cos (φ1) + cos (φ′

2) + 2α cos
(

φx

2

)
(

1 +
tan2 ( φx

2

)
8

(γx − 1)2
)

cos
(

φ′
2 − φ1 − φz +

φx

2
−

−γx − 1
2

tan
(

φx

2

)
+

(γx − 1)2

4
tan

(
φx

2

))]
.

(4.5)

Therefore, if the system starts to deviate from symmetry, the lead-
ing effect of asymmetry will be an extra phase on the cosine. For
slightly more asymmetric loops, the next order effect will modify the
prefactor of the cosine.
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4.3.1 Coherence time dependencies of the 3JJ Flux Qubit

As said in section 3.3, the qubit relaxation time time is described by
Fermi’s Golden Rule (3.5). Since it depends on the inverse of Γi→ f ,
the maximization of the coherence time can be achieved trough the
minimization of the off-diagonal matrix elements ⟨i|H′| f ⟩ or through
the minimization of the noise power spectral density S(ω).

Starting with the minimization of ⟨i|H′| f ⟩, it is convenient to re-
alize that, in an analogy to the harmonic oscillator Hamiltonian, the
capacitance C of the Hamiltonians derived (like Eq. (4.3)) acts as the
”mass” of the system. Therefore, shunting the system with higher ca-
pacitance localizes the eigensates at the minima as it can be seen in
Figure 4.7a, thus reducing the first off-diagonal terms. Consequently,
the coherence time is enhanced. Keeping in mind that EC is inversely
proportional to C, then a higher capacitance produces a higher ratio
of energies EJ/EC. The effect of capacitive shunting can be seen in
Figure 4.5b. This result is also valid for Fluxoniums (see Sec. 4.4) and
has been applied in [46] with heavy Fluxoniums obtaining coherence
times of the order of the ms. One of the drawbacks of this method
is the loss of anharmonicity in the qubit spectrum, which affects the
qubit controlability.

To minimize the value of noise power spectral density S(ω), the
predominant noise mechanism should be identified. It has been found,
running simulations in ScQubits (Appendix A.4), that dielectric noise
is the limiting factor for the 3-Junction Qubit. This noise is due to
material imperfections and has been reported as a major limitation
for phase qubits [47], transmons [48] and fluxoniums [49]. The first
way to improve coherence time is to produce high quality dielectrics,
through, for instance, enhanced cleaning methods in the clean room.
ScQubits modelizes the spectral density of the dielectric noise as [50]:

Scap(ω) =
2h̄

CQcap(ω)

 coth h̄|ω|
2kBT

1 + exp
(
− h̄ω

kBT

)
 ; Qcap(ω) = 106

(
2π × 6
|ω|

)0.7

.

(4.6)

Using linear regressions in double log scales for the same simula-
tions in ScQubits, it has been found that, near the double well limit,
the effective coherence time is proportional to t1eff(ω ≪ 1) ∝ ω−0.7

and t1eff(ω ≫ 1) ∝ ω−1.7. The code used to find the exponents is
shown in A.5. Therefore, lower qubit frequencies lead to longer co-
herence times. This can be achieved by decreasing EJ as in Figure
4.5a while, at the same time, increasing the energy ratio EJ/EC as in
Figure 4.5b.

https://scqubits.readthedocs.io/en/v4.1/
https://scqubits.readthedocs.io/en/v4.1/
https://scqubits.readthedocs.io/en/v4.1/
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(a) EJ/EC = 100. (b) EJ = 20 GHz. (c) EJ = 20 GHz and
EJ/EC = 100.

Figure 4.5: Effective relaxation time for the 3 Josephson Junction Qubit.
Obtained with A.6, A.7 and A.8.

Another change that could be considered to improve the coherence
time is to drive the qubit away from the double-well limit, thus mod-
ifying the matrix element of Fermi’s Golden Rule formula. This is
done by an increase of δα from α = 1

N (1 + δα). Figure 4.5c shows a
maximum where the dielectric noise is minimized. From that point
on, it is likely that another noise mechanism takes over and decreases
the effective coherence time.

4.3.2 Effects of the asymmetry on the potential

It is also worth to study the dependence of the qubit frequency on
the external fluxes. On the symmetric case (γx = 1), Figure 4.6a is
obtained. There it can be seen how the linear crosstalk appears as
periodic lines φz − φx/2 which correspond to the lower qubit gaps.
This relation comes from the potential of the 3-Josephson Junction of
Eq. (4.4). For the asymmetric case (γx ̸= 1), Figure 4.6b is obtained
where there are noticeable changes on the linearity, the slope and
y-intercept due to the asymmetry parameters A and β.

(a) Symmetric X loop γx = 1. (b) Asymmetric X loop γx = 3.

Figure 4.6: Qubit frequency as a function of external fluxes for the 3

Josephson Junction circuit with a symmetric and asymmetric X
loop. The parameters used are α = 0.6 and a ratio of energies

EJ/EC of 100. Obtained with A.9.
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4.4 the fluxonium limit

Continuing the work of the previous section, here we describe a cir-
cuit which achieves even longer coherence times via inductive shunt-
ing. It will be shown how, by addidion of a large number of big
Josephson Junctions, the circuit achieves the Fluxonium limit. This
work shows how the N-Josephson Junction Hamiltonian of Section
4.1 and the Fluxonium Hamiltonian proposed in the literature [46]
produce the same results for N ≫ 1. We also analyze the coherence
time from simulations in ScQubits of circuits with different number
of big Josephson Junctions.

The term Fluxonium was first coined by Manuchyaran et al. [44]
and corresponds to a circuit of N Josephson Junctions with an α-
Junction, corresponding to the diagram of Figure 4.1a. Even though
Josephson Junctions are non-linear inductors, when the phase drop
across them is low (φ ≪ 1), they can be approximated to a linear in-
ductor, resulting in the circuit diagram of Figure 4.1b. Therefore, a big
enough array of N Josephson Junction with a big N and low Joseph-
son Energy acts as an inductor of energy EL = (Φ0/2π)2/(NLJ), with
LJ the inductance of each Josephson Junction. This is the reason why
the Hamiltonian of the Fluxonium is:

Ĥ = 4EC N̂2 +
1
2

EL φ̂2 − EJ cos (φ̂ − φz), (4.7)

where φz is the reduced external flux. The potential of the Fluxo-
nium is represented in Figure 4.7 as well as the wavefunctions of the
eigenstates with lower energy. The potential landscape of the fluxo-
nium shows the characteristic multiple minima, which have been ex-
aggerated for visual purposes. The double-well potential is obtained
using a small Josephson Junction with its α near the limit found in
Section 4.1.1 at φz = π.

(a) Heavy fluxonium (EC/h = 2.5 GHz). (b) Fluxonium (EC/h = 20 GHz).

Figure 4.7: Fluxonium potential and wavefunctions of the first eigenstates.
The parameters used are EJ/h = 20 GHz, EL/h = 0.25 GHz and

φz = π. Obtained with code from A.10.

https://scqubits.readthedocs.io/en/v4.1/
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An intuitive explanation behind the linear behavior of the array
of N Josephson Junction in the Fluxonium limit is that, because of
fluxoid quantization, the same total phase across the closed loop will
have to be distributed across a bigger number of similar elements.
Therefore, the phase drop for each element is reduced as more ele-
ments are introduced to the circuit. To check the equivalence between
Hamiltonians, the flux drop corresponding to the inductor (or array
of N Josephson Junctions) at the minimum corresponding to ∂Ĥ

∂φ = 0
must be the same for the two expressions. Therefore, near the double-
well limit (α = 1.01/N) Figure 4.8a is obtained where it can be seen
that the values converge for N > 20.

(a) Flux drop across the inductor with
experimental points for N-Josephson
Junction model and fluxonium solu-
tion from its Hamiltonian.

(b) Expected value of intensity of per-
sistent current as a function of N
Josephson Junction.

Figure 4.8: Flux drop and intensity of persistent current for the Fluxonium
Qubit. Obtained with A.11 and A.12.

Formally, the condition for a big Josephson Junction to behave as
a linear inductor is that its current must be much lower than its crit-
ical current IC. In the Fluxonium case, the current decreases as N in-
creases, as it can be seen in Figure 4.8b. This Figure has been obtained
with ScQubits as the expectation value for the intensity operator and
the ground state under the two-level approximation. The expectation

value for the intensity operator corresponds to ⟨ Î⟩ = ∂⟨Ĥ⟩
∂Φz

which, in

this case, equals to ⟨ Î⟩ = EJ
N(1+δα)

2π
Φ0
⟨sin (φ̂ − π)⟩.

https://scqubits.readthedocs.io/en/v4.1/
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4.4.1 Coherence time of the Fluxonium Qubit

Considering that the persistent current is low, Fluxoniums are less
sensitive to noise. This is the reason why Fluxoniums achieve higher
values of coherence time.

(a) Effective coherence time depending
on the loop inductance and including
dieletric noise.

(b) Effective coherence time depending
on the phase drop across the α

Josephson Junction.

Figure 4.9: Coherence time associated to the inductance and to the phase
drop across the α-Junction. The parameters used for the big
Josephson Junction are EJ/h = 50 GHz and CJ = 2.5 fF and

Csh = 25 fF. Obtained with codes A.13 and A.14.

Using ScQubits, different Fluxoniums have been simulated with dif-
ferent number of Josephson Junctions in the array, which are equiv-
alent to inductances with different L. Therefore, Figure 4.9a clearly
shows how a bigger inductance increases the effective coherence time.
This effect is due to a better isolation between the first two qubit
states, in a manner similar to Figure 4.7a with respect to Figure 4.7b
but via direct modification of the potential.

The longer coherence time of the Fluxonium could be due to a
lower phase drop across the α-Junction, which can be calculated as the
position of the minimum of the double-well potential. Nevertheless,
Figure 4.9b does not show a direct correlation between the effective
coherence time and the phase drop across the α-Junction. The reason
behind this could either be that it is not a variable which lets us tell
apart Flux Qubits from Fluxoniums, non-neglegible computational
error when the phase drop is computed or noise being independent
of phase across the α-Junction.

https://scqubits.readthedocs.io/en/v4.1/
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4.5 gradiometric flux qubit

The last circuit studied in this thesis is the Gradiometic Flux Qubit in-
troduced in article [51], whose diagram corresponds to Figure 4.10. In
this Section we study the Hamiltonian of the Gradiometric Flux Qubit
using the same asymmetry model as in Sec. 4.3. It will be shown how
this geometry makes the qubit capable of detecting differences be-
tween the external fluxes threading the two Z loops and suppresses
linear quantum crosstalk. This thesis also shows conditions to obtain
the double-well in this circuit and studies the effects that asymmetry
has on it. Figure 4.10 shows a schematic of the circuit.

Figure 4.10: Diagram of a Gradiometric Flux Qubit.

For simplicity, the circuit will be considered symmetric with re-
spect to the loop inductances LL = LR = L/2. To derive the potential
energy it will be useful to first express the branch fluxes with their
dependence on node fluxes as it has been done in Appendix A.4. It is
worth to compute the addition and subtraction of the branch fluxes
of the inductances. Therefore, with the inductor flux φL = −φzl + φ1

and φR = −φzr − φ1 − φx, then φL − φR = δφz + φx + 2φ1 and
φL + φR = −φzl − φzr − φx, which is the total external flux threading
the circuit, with δφz = φzl − φzr. The inductive terms of the poten-
tial will be proportional to the sum of the square of the inductors
fluxes and, thus, will be proportional to 1

2 [(φzr + φzl)
2 + (φzr − φzl)

2].
In this case, the term of the sum is equal to external fluxes and, there-
fore, will not be relevant in the dynamics of the system since they
vanish when deriving the equations of motion. Therefore, the induc-
tive terms will depend on the subtraction of the inductors phases,
which corresponds to the second term. Using flux quantization, some
trigonometry and changes of variables, the potential is obtained:

U(φ) =
Φ2

0
2L

(
1

2π

)2

φ′2
1 − EJ

[
cos (φ3) + cos (φ′

2)+

+2αA cos
(

φx

2

)
cos

(
φ′

1
2

− δφz

2
− φ′

2 − φ3 − β

)]
,

(4.8)
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where the definitions of the critical currents of subsection 4.3 have
been applied to model the asymmetry of the X loop and the asym-

metry appears in the prefactor A =

√
1 +

(
γx−1
γx+1

)2
tan2

(
φx
2

)
and the

phase β = atan
((

γx−1
γx+1

)
tan

(
φx
2

))
.

It is worth to notice how, for a symmetric X loop γx = 1, the sys-
tem does not show quantum crosstalk, contrary to the circuit in Sec.
4.3. Therefore, different parts of the Hamiltonian can be tuned inde-
pendently using external magnetic fluxes φx and φz. The intermedi-
ate steps to obtain the potential are in the Annex A.4 and the same
potential is verified in the Annex A.5. It is worth noticing that the
non-linear crosstalk due to asymmetry remains identical to the non-
gradiometric case of Eq. (4.4).

4.5.1 Double well potential for the asymmetric gradiometric flux qubit

In order to simplify the study of the potential and the double well
regime, the following classical approximation is used: the system will
stay close to the potential minima. This trick simplifies a multivari-
able potential to a single-variable function. Even though this approx-
imation does not provide the exact values for the minima of the po-
tential, it is useful to set constraints for the double well regime and to
study qualitatively the potential. Therefore, the gradient corresponds
to:

∇U(φ) =

2 Φ2
0

2L

( 1
2π

)2
φ′

1 +
1
2 2αEJ cos

( φx
2

)
A sin (β̃)

EJ sin (φ′
2)− 2αEJ cos

( φx
2

)
A sin (β̃)

EJ sin (φ3)− 2αEJ cos
( φx

2

)
A sin (β̃)

 = 0⃗. (4.9)

with β̃ =
φ′

1
2 − δφz

2 − φ′
2 − φ3 − β. By linear combination of the sec-

ond and third elements, the minima condition imposes φ = φ′
2 = φ3.

The number of variables can be reduced once more using the sec-
ond relation φ′

1 = − EJ L
2Φ2

0
(2π)2 sin φ, thus obtaining the single-variable

potential:

U(φ) =
LE2

J

8Φ2
0

sin2(φ)− EJ

[
2 cos(φ) + 2α cos

(
φx

2

)
A×

cos
(

EJ L
4Φ2

0
(2π)2 sin φ + 2φ +

δφz

2
+ β

)]
.

(4.10)
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We plot this potential in Figure 4.11. It is clear that δφz = 2π will
give rise to a double-well potential. For the symmetric case, to fur-
ther study how to obtain an isolated double well potential, the single-
variable potential can be expanded using δφz = 2π, obtaining:

U(φ) ≈
LE2

J

8Φ2
0

(
φ2 − φ4

3

)
− EJ

[
2
(

1 − φ2

2
+

φ4

24

)
−2α cos

(
φx

2

)(
1 − 1

2

(
EJ L
4Φ2

0
+ 2

)2

φ2 +
1
24

(
EJ L
4Φ2

0
+ 2

)4

φ4
)]

.

(4.11)

After some algebra, for α > 1
/(

2 cos
(

φx
2

)(
EJ L
4Φ2

0
+ 2

))
the quadratic

terms will be positive and the terms raised to the fourth power will
be positive. Therefore, this is the geometric constraint to obtain the
double-well potential and it defines the type of potential caused by a
given φx.

(a) δφz = 2π (b) φx = 0.45 · 2π, δφz = 2π

Figure 4.11: Potential for the asymmetric gradiometric circuit with ∇U = 0⃗,
α = 0.6, EJ/h = 20 GHz and L = 250 nH. Obtained with A.15

and A.16.

For φx > π the cosine is negative and, since α can only be positive,
there is no double well (see Figure 4.11a). For φx = π the lower bound
for α becomes ∞ and, therefore, the potential tends to − cos (x). Nev-
ertheless, for φx < π one could find a higher α than the positive and
finite lower bound and, therefore, obtain a double well as in Figure
4.11a. Moreover, as the external flux φx is closer to π, the minima
which are not from the double well start to disappear, thus isolating
the double well.

In consequence, with the gradiometric geometry, the external fluxes
decouple and quantum crosstalk disappears. Furthermore, it has been
proven how the use of δφz and φx can tune independently the po-
tential energy. Nevertheless, real Josephson Junctions are not exactly
equal and show some asymmetry. Since the asymmetry ratio γx be-
tween the Josepshon Energy of Josephson Junctions in the X loop
appears in A and β, when φX ̸= 0 then the asymmetry modifies
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the form of the potential (see Figure 4.11b). In this Figure, there is a
dephasing effect due to β and other minima start reappearing. The
prefactor A modifies the weight α of the last cosine and brakes the
symmetric balance that existed between different terms of the poten-
tial.

Nowadays, the Josephson Junction defects of fabrication are of the
order of 5%-10%. Therefore, in the worst case scenario γx ≈ 1.2 the
potential in Eq. (4.10) can be expanded with Taylor series around
γx − 1 → 0, thus obtaining Eq. (4.12) which is very similar to Eq. (4.5).
The dephasing will be the first symptom of asymmetry, followed by
an increase of the prefactor of the last cosine:

U(φ) ≈
LE2

J

8Φ2
0

sin2(φ)− EJ

[
2 cos(φ) + 2α cos

(
φx

2

)
(

1 +
tan2 ( φx

2

)
8

(γx − 1)2
)

cos
(

EJ L
4Φ2

0
(2π)2 sin φ + 2φ +

δφz

2
+

+
γx − 1

2
tan

(
φx

2

)
+

(γx − 1)2

4
tan

(
φx

2

))]
.

(4.12)

Thus, the effect of quantum crosstalk reappears in the gradiometric
potential as a consequence of asymmetry. Nevertheless, it is worth
noticing how the non-linear crosstalk of Eq. (4.12) due to asymmetry
is much smaller than the linear crosstalk of Eq. (4.5) due to the non-
gradiometric geometry of the usual qubit.

4.6 possible continuation of this work

The circuits studied in this Chapter display enhanced properties com-
pared to the RF-SQUID. Therefore, the completion of this work con-
sists in the combination of the best features in one single circuit: the
Gradiometric Fluxonium Qubit. This possible circuit would contain
high capacitance and inductance values, which would shunt the cir-
cuit and, in consequence, increase the coherence time. As it has been
shown, the gradiometric geometry would vanish the linear quantum
crosstalk effect, improving the controlability of the circuit. Neverthe-
less, a more in-depth study should be performed in order to confirm
these predictions.





5
C O N C L U S I O N S

This work has introduced superconducting qubits, as well as the the-
ory needed to study and understand them. Circuit QED Theory has
been used to obtain the Hamiltonian of different circuits.

The circuits have been introduced and studied, highlighting their
advantages and disadvantages. The properties introduced and high-
lighted are coherence time, quantum crosstalk and junction asymme-
try. Each circuit has presented an improvement in at least one of these
properties.

For the 3-Josephson Junction Qubit, capacitive noise was found
to be the predominant decoherence mechanism. Therefore, strategies
have been presented as a way to increase the coherence time of the
qubit. For a high value of N, it has been explained how a N-Josephson
Junction circuit reaches the Fluxonium limit. There, it has been shown
how a higher inductance significantly increases the coherence time.
For the Gradiometric Qubit, it has been shown how, by construction,
a symmetric circuit does not present linear quantum crosstalk.

For all of the circuits studied, conditions to obtain the double-well
potential have been detailed. For the Gradiometric Qubit the effects
of external fluxes in the form of the potential have been studied with
more detail. Simulations have been performed with ScQubits that es-
timate coherence times and different Figures have been elaborated
showcasing the effects of junction asymmetry on the potential, the
frequency of the qubit and coherence times. The effects of low asym-
metry on the potential have been derived, finding how it appears as a
phase offset inside a cosine term of the potential and how it modifies
the parameter α, giving rise to other local minima.

The completion of this work results in the fact that one could con-
sider the collective set of enhancements in a single circuit: the Gradio-
metric Fluxonium Qubit, to be studied in future works.
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A
A P P E N D I X

a.1 in-depth deduction of the njj hamiltonian

Given the following relation:

q =
(

∂L
∂

.
Φ

)
= Ceq


1 + CJ

Ceq
1 . . . 1

1 1 + CJ
Ceq

. . . 1
...

...
. . . 1
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Ceq




.
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ΦJ J2

...
.

ΦJ JN

 . (A.1)

Inverting the relation and obtaining Φ(q):
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(A.2)

Therefore,
.

ΦJ Ji =
1

CJ

(
qi +

qα
CJ
Ceq +N

)
where the variable qα := −∑N

i=1 qi

has been defined for commodity. Then, with the Legendre transforma-
tion of Eq. (3.3):

H =
N

∑
i=1

.
Φiqi −L =

N

∑
i=1

.
ΦiCeq

(
CJ

Ceq

.
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.
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2
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.
Φ2
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Ceq

2
.

Φ2
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1
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)2

+
Ceq

2C2
J

( N
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)2

+ U(Φ).
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With some algebra, the following Hamiltonian is obtained:

H =
1

2CJ

N

∑
i=1

q2
J Ji −

1

2Ceq
( CJ

Ceq
+ N

)2

( N

∑
i=1

qJ Ji

)2

+ U(Φ).

From the first steps of the derivation of the Hamiltonian, it is clear
that it corresponds to the sum of the contributions from the N and
α-Junction (with the Csh correction to the capacitive term of α).

a.2 in-depth deduction of the rf-squid hamiltonian

This circuit only contains two nodes which are allocated between the
inductor and the JJ. Therefore, conservation of current corresponds to
Eq. (A.3):

ΦL

L
= −(Csh − C)

..
ΦL + Ic sin (φL + φext). (A.3)

Which corresponds to the Lagrangian of Eq. (A.4):

L =
Ceq

2
.

Φ2
L −

1
2L

Φ2
L + EJ cos (φL + φext). (A.4)

Then the canonically conjugate variable is qL = ∂L
∂
.
ΦL

and, with the

Legendre transform, the Hamiltonian (A.5) is obtained:

H =
q2

L
2Ceq

+
Φ2

L
2L

− EJ cos
(

2π

Φ0

{
ΦL + Φext

})
. (A.5)

Promoting the variables to operators, then the final Hamiltonian
for the RF-SQUID is obtained.

a.3 intermediate steps towards 3-josephson junction po-
tential

Setting the ground to node 0 and substituting the branch fluxes by
the nodes, the potential (A.6) is obtained:

U(φ) = −∑
i

EJi cos (φi) = −EJ

[
cos (φ1) + cos (φ2 − φ1 + φz)+

+
2α

1 + γx

{
γx cos (−φ2) + cos (φ2 + φx)

}]
.

(A.6)

where flux quantization has been taken into account in the closing
branches and φx = 2π

Φ0
Φx and φz = 2π

Φ0
Φz correspond to the reduced
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external flux. Performing the change of variable φ′
2 = φ2 − φ1 + φz

and applying the formula for the cosine of the sum and subtraction
of angles cos (α ± β) = cos (α) cos (β) ∓ sin (α) sin (β), the potential
(A.7) is obtained:

U(φ) = −EJ

[
cos (φ1) + cos (φ′

2) + 2α cos
(

φx

2

){
cos

(
φ2 +

φx

2

)
+

+

(
γx − 1
γx + 1

)
tan

(
φx

2

)
sin

(
φ2 +

φx

2

)}]
.

(A.7)

In order to obtain a more simplified expression, the following trick
must be performed. Knowing that the end result should have the
structure C cos (α − β), then the subtraction expression can be utilized
with α = φ2 +

φx
2 , C cos (β) = 1 and C sin (β) = γx−1

γx+1 tan
( φx

2

)
, thus

obtaining potential (4.4):

U(φ) = −EJ

[
cos (φ1) + cos (φ′

2) + 2α cos
(

φx

2

)
√

1 +
(

γx − 1
γx + 1

)2

tan2
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2

)
cos

(
φ′

2 − φ1 − φz +
φx

2
−

− atan
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γx − 1
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)
tan

(
φx

2

)))]
.

(A.8)

a.4 intermediate steps towards the gradiometric qubit

potential

To derive the potential it will be useful to first express the branch
fluxes with their dependence on node fluxes obtaining φa = φ3, φb =

φ1 − φ2, φc = φ2 − φ3, φd = φx + φ2 − φ3, φL = −φzl + φ1 and
φR = −φzr − φ1 − φx, where flux quantization has been used across
the three closed loops. It is useful to compute φL − φR = φzl − φzr +

φx + 2φ1 = δφz + φx + 2φ1 and φL + φR = −φzl − φzr − φx, with
δφz = φzl − φzr, in order to find the inductive terms of the potential.
These will be proportional to (φ2

zr + φ2
zl) which is equal to 1

2 [(φzr +

φzl)
2 + (φzr − φzl)

2].

Adding again the contributions of each circuit element, the poten-
tial of the system will be of the form of Eq. A.9, where the definitions
of the critical currents of section 4.3 have been applied to model the
asymmetry of the X loop:
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U(φ) =
Φ2

0
2L

(
1

2π

)2

(δφz + φx + 2φ1)
2 − EJ

[
cos (φ1 − φ2)+

+ cos (φ3) +
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γx cos (φ2 − φ3) + cos (φ2 − φ3 + φx)

}]
.

(A.9)

Performing the first change of variables φ′
1 = 2φ1 + δφz + φx and

then φ′
2 =

φ′
1

2 − δφz
2 − φx

2 − φ2, the potential obtained corresponds to
Eq. (A.10):

U(φ) =
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(A.10)

With the cosine of the sum and the subtraction of angles and know-
ing that the simplified expression is of the form C cos (α − β), the
final Hamiltonian of the system corresponds to Eq. 4.8 with A =√

1 +
(

γx−1
γx+1

)2
tan2

(
φx
2

)
and the phase β = atan

((
γx−1
γx+1

)
tan

(
φx
2

))
.

a.5 verification of the gradiometric qubit potential

Knowing that the potential depends only on U(φ) and that the kin-
teic energy depends only on T(q), then a potential is correct if it
generates the φ-dependent terms in the equations of motion. Apply-
ing Kirchhoff’s laws for the different nodes, the equations of motion
obtained correspond to:

Cb
..
Φb + ICb sin φb + Cc

..
Φc + ICc sin φc = Cd

..
Φd + ICd sin φd

Ca
..
Φa + ICa sin φa + Cc

..
Φc + ICc sin φc = Cd

..
Φd + ICd sin φd

Cb
..
Φb + ICb sin φb +

ΦR

L/2
=

ΦL

L/2

Ca
..
Φa + ICa sin φa +

ΦR

L/2
=

ΦL

L/2
.

(A.11)

It is worth to notice how the inductors’ terms appear always as a
difference, showcasing how the potential depends on φL − φR = φ′

1.
Applying the definitions and changes of variables described in sec-
tion 4.5, then the potential derived would produce the φ-dependent
terms of Eq. (A.11) under Euler-Lagrange formula. Therefore, the for-
mula derived describes correctly the potential of the system.
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a.6 code used

The following fragments of code have been made and used to obtain
all the Figures and results of Chapter 4. The fragment A.1 includes
general definitions, functions and libraries. Therefore, it is needed
as a preamble for the rest of the code. More specific functions are
specified at the top of each fragment.

Listing A.1: General initialization of the code

import scqubits as scq

import sccircuitbuilder as sc

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import fsolve, minimize

E = 1.6021766208E-19

Flux0 = 2.067833831E-15

def convert_J_toGHz(value):

return value / (6.62607E-25)

def convert_GHz_toJ(value):

return value * (6.62607E-25)

def I_C_from_E_J(E_J):

return E_J * 2 * np.pi/Flux0

def E_J_in_GHz_from_I_C(I_C):

return convert_J_toGHz(I_C * Flux0 /(2 * np.pi))

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.rcParams.update({

’ font . size ’: 20,

’axes . t i t l es ize ’: 22,

’axes . labelsize ’: 20,

’ xtick . labelsize ’: 18,

’ ytick . labelsize ’: 18,

’ legend . fontsize ’: 20

})
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Listing A.2: Graphical representation of the double-well potential of the 3-
Josephson Junction Flux Qubit.

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

numcycles = 4

numpoints = 100

numperiods = 1

numpoints = 500

N = 2

EJ = 20

alpha_displacement = 0.5

ratio = 100

flux = 0.52

qubit = create_qubit_from_ratio_energies(EJ, ratio,

alpha_displacement, N, flux)

grid1d = scq.core.discretization.Grid1d(-numperiods/2 * 2

* np.pi, numperiods/2 * 2 * np.pi, numpoints)

plt.figure(1)

test = qubit.plot_wavefunction([0, 1, 2], phi_grid =

grid1d)

plt.xlim(-numperiods/2 * 2 * np.pi, numperiods/2 * 2 * np

.pi)

plt.xlabel(r ’$\varphi$ $(\frac{\Phi_0}{2\pi } )$ ’, fontsize

=20)

plt.ylabel(r ’$U(\varphi)$ (GHz) ’, fontsize=20)

plt.xticks(fontsize=18)

plt.yticks(fontsize=18)

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

ax = plt.gca()

ax.spines[ ’ top ’].set_visible(True)
ax.spines[ ’ right ’].set_visible(True)
ax.spines[ ’ l e f t ’].set_visible(True)
ax.spines[ ’bottom ’].set_visible(True)

plt.savefig(" qubit_potential_test_tilt .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.3: Graphical representation of the potential of the 3-Josephson
Junction Flux Qubit.

def potential_2(phi1, phi2, alpha, EJ, gamma, phix,

deltaphiz):

value = - EJ * ( np.cos(phi1) + np.cos(phi2) + 2 * alpha

* np.cos((2 * np.pi) * phix / 2) * np.sqrt(1 + ((

gamma - 1)/(gamma + 1))**2 * (np.tan((2 * np.pi) *
phix/2))**2) * np.cos(phi2 - phi1 - (2 * np.pi) *
deltaphiz + (2 * np.pi) * phix / 2 - np.arctan((gamma

- 1)/(gamma + 1) * np.tan((2 * np.pi) * phix/2))) )

return value

numcycles = 4

numpoints = 100

EJ = 20

phi2s = np.linspace(-numcycles/2 * 2 * np.pi, numcycles/2

* 2 * np.pi, numpoints)

phi1s = np.linspace(-numcycles/2 * 2 * np.pi, numcycles/2

* 2 * np.pi, numpoints)

alpha = 0.6

gamma = 1

potential = []

phix = 0

deltaphiz = 0.5

for phi1 in phi1s:

temp_potential = []

for phi2 in phi2s:

value = potential_2(phi1, phi2, alpha, EJ, gamma, phix,

deltaphiz)

temp_potential.append(value)

potential.append(temp_potential)

print(phi1)

phi2_data, phi1_data = np.meshgrid(phi2s, phi1s)

plt.figure(1)

plt.contourf(phi2_data, phi1_data, potential)

cbar = plt.colorbar()

cbar.set_label(r "$U(\varphi_2 , \varphi_1 )$ (GHz) ")
plt.xlabel(r "$\varphi_2$ $(\frac{\Phi_0}{2\pi } )$")
plt.ylabel(r "$\varphi_1$ $(\frac{\Phi_0}{2\pi } )$")
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.tight_layout()

plt.savefig("3JJ_gamma1_phix0 .png", dpi=900, bbox_inches=

’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.4: Simulation to find the predominant noise mechanism.

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

N= 2

EJ = 20

ratio = 100

alpha_displacement = 0.01

test_qubit = create_qubit_from_ratio_energies(EJ, ratio,

alpha_displacement, N, 0.5)

test_qubit.plot_t1_effective_vs_paramvals(param_name= ’
flux ’,

param_vals=np.linspace(-0.5, 0.5, 100),

scale=1e-3,

ylabel=r "$\mu s$");

test_qubit.plot_coherence_vs_paramvals(param_name= ’ flux ’,
param_vals=np.linspace(-0.5, 0.5, 100),

scale=1e-3,

ylabel=r "$\mu s$");
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Listing A.5: Power law between the effective relaxation time and the fre-
quency of the qubit.

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

N = 100

big_E_Js = np.linspace(20, 80, 50)

ratio = 100

alpha_displacement = 0.01

qubit_gaps = []

T_capacitives_flux_05 = []

T_1_effs_flux_05 = []

for big_E_J in big_E_Js:

flux_qubit = create_qubit_from_ratio_energies(big_E_J,

ratio, alpha_displacement, N, 0.5)

eigenvals = flux_qubit.eigenvals(evals_count=2)

qubit_gap = eigenvals[1] - eigenvals[0]

qubit_gaps.append(qubit_gap)

T_capacitives_flux_05.append(flux_qubit.t1_effective(

noise_channels=[ ’ t1_capacitive ’]))
T_1_effs_flux_05.append(flux_qubit.t1_effective())

y_1_data = np.array(T_1_effs_flux_05)

y_1_data *= 1/1000

y_cap_data = np.array(T_capacitives_flux_05)

y_cap_data *= 1/1000

slope2, interception2 = np.polyfit(np.log(qubit_gaps), np

.log(y_cap_data/max(y_cap_data)), 1)

correlation_matrix = np.corrcoef(np.log(qubit_gaps), np.

log(y_cap_data/max(y_cap_data)))

correlation_coefficient = correlation_matrix[0, 1]

r2_corrcoef = correlation_coefficient ** 2

print("t1cap power law {} ".format(slope2))
print(r2_corrcoef)

print(50 * "−")

slope2, interception2 = np.polyfit(np.log(qubit_gaps), np

.log(y_1_data/max(y_1_data)), 1)

correlation_matrix = np.corrcoef(np.log(qubit_gaps), np.

log(y_1_data/max(y_1_data)))

correlation_coefficient = correlation_matrix[0, 1]

r2_corrcoef = correlation_coefficient ** 2

print(" t1eff power law {} ".format(slope2))
print(r2_corrcoef)
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Listing A.6: Coherence time as a function of EJ .

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

N= 2

big_E_J_start = 10

big_E_J_end = 100

big_E_Js = np.linspace(big_E_J_start, big_E_J_end, 100)

ratio = 100

alpha_displacement = 0.01

t1_effs = []

for big_E_J in big_E_Js:

qubit_test = create_qubit_from_ratio_energies(big_E_J,

ratio, alpha_displacement, N, 0.5)

t1_effs.append(qubit_test.t1_effective())

np_t1_effs = np.array(t1_effs)/1000

plt.figure(2)

plt.scatter(big_E_Js, np_t1_effs)

plt.tight_layout()

plt.ylabel(r ’ $t_{1 eff }$ $(\mu$s) ’)
plt.xlabel(r ’$E_J$ (GHz) ’)
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.savefig("3JJ_cohtime_EJ .png", dpi=900, bbox_inches= ’
tight ’, pad_inches=0.1)

plt.show()
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Listing A.7: Coherence time as a function of EJ/EC.

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

N= 2

EJ = 20

ratio_start = 10

ratio_end = 100

ratios = np.linspace(ratio_start, ratio_end, 100)

alpha_displacement = 0.01

t1_effs = []

for ratio in ratios:

qubit_test = create_qubit_from_ratio_energies(EJ, ratio,

alpha_displacement, N, 0.5)

t1_effs.append(qubit_test.t1_effective())

np_t1_effs = np.array(t1_effs)/1000

plt.figure(2)

plt.scatter(ratios, np_t1_effs)

plt.tight_layout()

plt.ylabel(r ’ $t_{1 eff }$ $(\mu$s) ’)
plt.xlabel(r ’$E_J/E_C$’)
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.savefig("3JJ_cohtime_ratio .png", dpi=900, bbox_inches

= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.8: Coherence time as a function of the distance to the double well
limit.

def create_qubit_from_ratio_energies(big_E_J, ratio,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

E_C = big_E_J / N * (1 + alpha_displacement) / ratio

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

N = 2

big_E_J = 20

ratio = 100

alpha_displacements = np.linspace(0, 0.5, 50)

T_1_effs_flux_05 = []

mat_elems_squared = []

for alpha_displacement in alpha_displacements:

flux_qubit = create_qubit_from_ratio_energies(big_E_J,

ratio, alpha_displacement, N, 0.5)

T_1_effs_flux_05.append(flux_qubit.t1_effective())

n_matrix = flux_qubit.matrixelement_table( ’n_operator ’,
evals_count=6)

mat_elems_squared.append(n_matrix[0][1] * n_matrix[0][1].

conjugate())

print(mat_elems_squared)

print(qubit_gaps)

y_1_data = np.array(T_1_effs_flux_05)

y_1_data *= 1/1000

plt.figure(3)

plt.scatter(alpha_displacements, y_1_data/max(y_1_data),

label=r "$t_{1 eff }$")
plt.scatter(alpha_displacements, mat_elems_squared/max(

mat_elems_squared), label=r "$|\langle{0}|\hat {n}|1\
rangle|^2$")

plt.tight_layout()

plt.ylabel(r ’$Y/Y_{max}$ ’)
plt.xlabel(r ’$\delta\alpha$ ’)
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.legend()

plt.savefig("coherence_delta_alpha .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.9: Coherence time as a function of external fluxes for a symmetric
and asymmetric 3-Josephson Junction Flux Qubit.

def create_qubit_from_ratio_energies_3JJasymmetric(

big_E_J, ratio, alpha, gamma, phiX, phiZ):

alpha_tilla = 2 * alpha * np.cos(0.5 * phiX) * np.sqrt(1

+ ((gamma-1)/(gamma+1))**2 * (np.tan(0.5 * phiX))**2)

if alpha_tilla < 0.5:

print("Not in double well ! ")
print("Gamma: "+str(gamma))
print("Alpha: "+str(alpha))
print("PhiX: "+str(phiX))

E_C = alpha_tilla * big_E_J / ratio

qubit = scq.Fluxonium(EJ = big_E_J * alpha_tilla, EC =

E_C, EL = big_E_J / 2, flux = -phiZ + 0.5 * phiX + np

.arctan(((gamma-1)/(gamma+1))*np.tan(0.5*phiX)),

cutoff=120)

return qubit

N = 2

big_E_J = 20

ratio = 100

phiXs = np.linspace(-1, 1, 50)

phiZs = np.linspace(-1, 1, 50)

alpha = 0.6

gamma = 3

qubit_gaps = []

for phiZ in phiZs:

temp_qubit_gaps = []

for phiX in phiXs:

flux_qubit =

create_qubit_from_ratio_energies_3JJasymmetric(

big_E_J, ratio, alpha, gamma, phiX, phiZ)

eigenvals = flux_qubit.eigenvals(evals_count=2)

qubit_gap = eigenvals[1] - eigenvals[0]

temp_qubit_gaps.append(qubit_gap)

qubit_gaps.append(temp_qubit_gaps)

phiX_data, phiZ_data = np.meshgrid(phiXs, phiZs)

plt.figure(1)

plt.contourf(phiX_data, phiZ_data, qubit_gaps)

cbar = plt.colorbar()

cbar.set_label(r "$\nu(\varphi_x , \varphi_z)$ (GHz) ")
plt.xlabel(r "$\varphi_x$ $(\frac{\Phi_0}{2\pi } )$")
plt.ylabel(r "$\varphi_z$ $(\frac{\Phi_0}{2\pi } )$")
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.tight_layout()

plt.savefig("asym_ext_fluxes .png", dpi=900, bbox_inches= ’
tight ’, pad_inches=0.1)

plt.show()
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Listing A.10: Potential of the Fluxonium and representation of the wavefunc-
tions of the lowest eigenstates.

fluxonium = scq.Fluxonium(EJ = 20,

EC = 20,

EL = 0.25,

flux = 0.5,

cutoff = 110)

numperiods = 6

numpoints = 500

grid1d = scq.core.discretization.Grid1d(-numperiods/2 * 2

* np.pi, numperiods/2 * 2 * np.pi, numpoints)

plt.figure(1)

test = fluxonium.plot_wavefunction([0, 1, 2], phi_grid =

grid1d)

plt.xlim(-numperiods/2 * 2 * np.pi, numperiods/2 * 2 * np

.pi)

plt.ylim(-22, 25)

plt.xlabel(r ’$\varphi$ $(\frac{\Phi_0}{2\pi } )$ ’, fontsize

=20)

plt.ylabel(r ’$U(\varphi)$ (GHz) ’, fontsize=20)

plt.xticks(fontsize=18)

plt.yticks(fontsize=18)

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

ax = plt.gca()

ax.spines[ ’ top ’].set_visible(True)
ax.spines[ ’ right ’].set_visible(True)
ax.spines[ ’ l e f t ’].set_visible(True)
ax.spines[ ’bottom ’].set_visible(True)

plt.savefig("fluxonium_potential_20 .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.11: Minima of the double well for the Fluxonium.

def func_to_minimize(phi, N, alpha):

return - N * np.cos(phi) + alpha * np.cos(N * phi)

def graph_sweep_N(Ns, phis, alpha):

fig, ax = plt.subplots()

ax.scatter(Ns, np.multiply(np.abs(phis), Ns), label="
Experimental points")

plt.axhline(y=0.244, color= ’ r ’, linestyle= ’−−’, label="
Fluxonium solution")

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.ylabel(r ’$N\varphi_{ J J }^*(\frac{\Phi_0}{2\pi } )$ ’)
plt.xlabel(r ’N’)
plt.legend()

plt.tight_layout()

plt.savefig("fluxonium_minima_by_NJJ .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

def sweep_N_with_alpha_close(init_N, end_N, num_N,

alpha_displacement, threshold, start_point = 0.1,

display_funcs = False, display_sweep_N = True,

return_phis = False, display_phialpha = False):

Ns = np.linspace(init_N, end_N, num_N)

phis = []

for i in range(len(Ns)):

N = Ns[i]

alpha = 1 / N * (1 + alpha_displacement)

result = minimize(func_to_minimize, start_point, args = (

N, alpha) ,options={"disp":False})

if second_derivative(result.x, N, alpha) <= 0:

print("Maximum mistaken by minimum. Try changing starting
point . ")

break

if np.abs(derivative(result.x, N, alpha)) >= threshold:

print("The f i r s t derivative is higher than the threshold .
")

break

phis.append(result.x[0])

if display_funcs == True:

graph_func(result.x, result.fun, N, alpha)

if display_sweep_N == True:

graph_sweep_N(Ns, phis, alpha)

if display_phialpha == True:

graph_sweep_N_alpha(Ns, phis, alpha)

if return_phis == True:

return phis
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Listing A.12: Expectation value of the Intensity of the Fluxonium as a func-
tion of N.

big_E_J = 20

Ns = np.arange(2, 102, 2)

alpha_displacement = 0.01

ratio = 100

eigvals = []

eigvals_full = []

for N in Ns:

qubit_test = create_qubit_from_ratio_energies(big_E_J,

ratio, alpha_displacement, N, 0.5)

I_operator = convert_GHz_toJ(big_E_J) / N * (1 +

alpha_displacement) * (2 * np.pi) / Flux0 *
qubit_test.sin_phi_operator(alpha = 1.0, beta = - np.

pi)

submatrix = np.array([[I_operator[0, 0], I_operator[0,

1]],

[I_operator[1, 0], I_operator[1, 1]]])

errors.append(np.abs(submatrix[0][0] / submatrix[1][0]))

eigvals_full.append(scipy.linalg.eigvalsh(I_operator)[0])

eigvals.append(scipy.linalg.eigvalsh(submatrix)[1])

plt.figure(1)

plt.scatter(Ns, np.array(eigvals) * 1E9)

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.xlabel(r "N")
plt.ylabel(r " I (nA) ")
plt.tight_layout()

plt.savefig("fluxonium_intensity_by_scqfluxonium .png",
dpi=900, bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.13: Part I: Simulation of coherence time for the Fluxonium circuit.

def create_fluxonium_Cshunted(big_E_J, C_bigJJ, C_sh,

alpha_displacement, N, flux = 0.5):

alpha = 1/N * (1 + alpha_displacement)

C_eq = (alpha * C_bigJJ + C_sh) * 1E-15

E_C = convert_J_toGHz(E**2 /(2 * C_eq))

qubit = scq.Fluxonium(EJ = big_E_J / N * (1 +

alpha_displacement), EC = E_C, EL = big_E_J / N, flux

= flux, cutoff=120)

return qubit

def sweep_N_with_alpha_close_tuned(Ns, alpha_displacement

, threshold, start_point = 0.1, display_funcs = False

, display_sweep_N = True, return_phis_alpha = False,

display_phialpha = False):

phis = []

for i in range(len(Ns)):

N = Ns[i]

alpha = 1 / N * (1 + alpha_displacement)

result = minimize(func_to_minimize, start_point, args = (

N, alpha) ,options={"disp":False})

if second_derivative(result.x, N, alpha) <= 0:

print("Maximum mistaken by minimum. Try changing starting
point . ")

break

if np.abs(derivative(result.x, N, alpha)) >= threshold:

print("The f i r s t derrivative is higher than the threshold
. ")

break

phis.append(result.x[0])

if display_funcs == True:

graph_func(result.x, result.fun, N, alpha)

if display_sweep_N == True:

graph_sweep_N(Ns, phis, alpha)

if display_phialpha == True:

graph_sweep_N_alpha(Ns, phis, alpha)

if return_phis_alpha == True:

return np.pi - np.multiply(np.abs(phis), Ns)

C_bigJJ = 2.5

C_sh = 25

alpha_displacement = 0.01

Ns = np.arange(2, 504, 5)

print(Ns)

big_E_J = 50
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Listing A.14: Part II: Simulation of coherence time for the Fluxonium circuit.

T_1_effs_flux_05 = []

for N in Ns:

test_qubit = create_fluxonium_Cshunted(big_E_J, C_bigJJ,

C_sh, alpha_displacement, N, flux = 0.5)

T_1_effs_flux_05.append(test_qubit.t1_effective(flux=0))

y_data = np.array(T_1_effs_flux_05)

y_data *= 1/1000

Ls = np.zeros(len(Ns))

Ls = Ns * (Flux0/(2 * np.pi)) ** 2 / convert_GHz_toJ(

big_E_J) * 1E9

print(Ls[0])

plt.figure(3)

plt.scatter(Ls, y_data)

plt.tight_layout()

plt.ylabel(r ’ $t_{1 eff }$ $(\mu s )$ ’)
plt.xlabel(r ’$L$ $(nH)$ ’)
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.savefig("fluxonium_t1eff_L .png", dpi=900, bbox_inches

= ’ tight ’, pad_inches=0.1)

plt.show()

phis_alpha_min = sweep_N_with_alpha_close_tuned(Ns, 0.01,

1E-4, 0.1, False, False, True, False)

plt.figure(4)

plt.scatter(phis_alpha_min[1:], y_data[1:])

plt.tight_layout()

plt.ylabel(r ’ $t_{1 eff }$ $(\mu s )$ ’)
plt.xlabel(r ’$\varphi^*_{\alpha}$ $ (\frac{\Phi_0}{2\pi } )

$ ’)
plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.savefig("fluxonium_t1eff_varphi_alpha .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.15: Single-variable potential of asymmetric gradiometric qubit.

def potential_more_reduced_gradiometric(phi, L, alpha, EJ

, gamma, phix, deltaphiz):

LSI = L * 1E-9

value = 1/convert_J_toGHz(Flux0 ** 2 / LSI) * EJ ** 2 / 8

* (np.sin(phi)) ** 2 - EJ * (2 * np.cos(phi) + 2 *
alpha * np.cos((2 * np.pi) * phix / 2) * np.sqrt(1 +

((gamma - 1)/(gamma + 1))**2 * (np.tan((2 * np.pi) *
phix/2))**2) * np.cos(1/convert_J_toGHz(Flux0**2/LSI)

* EJ /4 * (2 * np.pi) ** 2 * np.sin(phi) + (2 * np.

pi) * deltaphiz / 2 + 2 * phi + np.arctan((gamma - 1)

/(gamma + 1) * np.tan((2 * np.pi) * phix/2))))

return value

numcycles = 1

big_E_J = 20

L = 250

phiX1 = 0

phiX2 = 0

delta_phiZ1 = 0

delta_phiZ2 = 1

alpha = 0.6

gamma = 1.1

phis = np.linspace(-numcycles/2 * 2 * np.pi, numcycles/2

* 2 * np.pi, 500)

potential = []

potential2 = []

for phi in phis:

potential2.append(potential_more_reduced_gradiometric(phi

, L, alpha, big_E_J, gamma, phiX2, delta_phiZ2))

potential.append(potential_more_reduced_gradiometric(phi,

L, alpha, big_E_J, gamma, phiX1, delta_phiZ1))

plt.figure(1)

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.plot(phis, potential, linestyle= ’−−’, color= ’red ’,
linewidth=2.5, label=r "$\delta \varphi_z = 0$")

plt.plot(phis, potential2, color = "b", linewidth=2.5,

label=r "$\delta \varphi_z = 2\pi$")
plt.legend()

plt.xlabel(r "$\varphi$ $ (\frac{\Phi_0}{2\pi } )$")
plt.ylabel(r "U$(\varphi)$ (GHz) ")
plt.savefig("1Dpotential_test_1 .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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Listing A.16: Single-variable potential of asymmetric gradiometric qubit for
different asymmetry values.

numcycles = 1

big_E_J = 20

L = 250

phiX = 0.48

delta_phiZ = 1

alpha = 0.6

gamma1 = 1

gamma3 = 1.2

gamma4 = 2

gamma5 = 5

phis = np.linspace(-numcycles/2 * 2 * np.pi, numcycles/2

* 2 * np.pi, 500)

potential1 = []

potential3 = []

potential4 = []

for phi in phis:

potential1.append(potential_more_reduced_gradiometric(phi

, L, alpha, big_E_J, gamma1, phiX, delta_phiZ))

potential3.append(potential_more_reduced_gradiometric(phi

, L, alpha, big_E_J, gamma3, phiX, delta_phiZ))

potential4.append(potential_more_reduced_gradiometric(phi

, L, alpha, big_E_J, gamma4, phiX, delta_phiZ))

plt.figure(1)

plt.tick_params(axis= ’x ’, bottom=True, top=True,

direction= ’ in ’, length=4, width=1)

plt.tick_params(axis= ’y ’, left=True, right=True,

direction= ’ in ’, length=4, width=1)

plt.plot(phis, potential1, linestyle= ’−−’, color= ’black ’,
linewidth=2.5, zorder=3, label=r "$\gamma_x = 1$")

plt.plot(phis, potential3, color = "red", linewidth=2.5,

zorder=2, label=r "$\gamma_x = 1.2$")
plt.plot(phis, potential4, color = "blue", linewidth=2.5,

zorder=1, label=r "$\gamma_x = 2$")
plt.legend()

plt.xlabel(r "$\varphi$ $ (\frac{\Phi_0}{2\pi } )$")
plt.ylabel(r "U$(\varphi)$ (GHz) ")
plt.savefig("1Dpotential_1_asyms .png", dpi=900,

bbox_inches= ’ tight ’, pad_inches=0.1)

plt.show()
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