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Abstract

Quantum chemistry simulation is just one of the many areas in which quantum computers could
outperform classical ones. Aspuru-Guzik et. al. proposed in [4] a quantum algorithm to efficiently
calculate the ground state energy of molecules. This algorithm required the ability to prepare the
molecular ground state in a quantum register, and for this end they also proposed the adiabatic
state preparation (ASP) algorithm. This algorithm is based on the adiabatic theorem, which
guarantees that a system prepared in the ground state will remain in the instantaneous ground
state when let evolve in time under a varying Hamiltonian, as long as this variation is sufficiently
slow. In this project, we use existing Python packages to perform classical simulations of ASP for
the ground states of dihydrogen (H2) and lithium hydride (LiH). We also pay attention to the
role played by entanglement in this process.
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Chapter 1

Introduction

In 1982 R. Feynman published the groundbreaking paper Simulating Physics with Computers [11],
where he proposed using quantum computers to simulate quantum systems. Since then, research
in this area has been very fruitful, and the applications in which quantum computers could out-
perform classical ones range, among others, from integer factorization [22] to quantum chemistry.
The latter is the one that concerns us in this work.

In [4], Aspuru-Guzik et. al. presented a quantum algorithm to efficiently calculate the ground state
energy of molecules. In order to obtain a high probability of success, this algorithm requires the
preparation of a state in a quantum register with a large square overlap with the ground state of
the molecule. The authors proposed that this could be achieved by an adiabatic state preparation
(ASP) algorithm relying on the adiabatic theorem [7, 9]. This theorem states that a system will
remain in its instantaneous ground state if the Hamiltonian that governs its evolution is changed
slowly enough over time. Another requirement is the existence of a positive energy gap between the
instantaneous ground state and the rest of the eigenspectrum throughout the evolution. Thus, ASP
involves starting with a Hamiltonian whose ground state is easy to prepare, and then time evolving
the system while slowly varying the Hamiltonian into the one describing the desired molecule.

In this project we perform a qualitative and numerical study of the adiabatic state preparation
of the ground states of dihydrogen (H2) and lithium hydride (LiH). We will discuss how the
evolution time is affected by the minimum energy gap, and different ways in which this time can
be reduced. We will also look at the entanglement of the system along the evolution, and we will
establish relations between the system entanglement and other magnitudes, such as the probability
of success and the position of the minimum energy gap. Previous works [25, 15] studying ASP relied
on advanced computational chemistry techniques and programming. In our code we bridge two
existing Python packages for the classical simulation of quantum systems, namely OpenFermion
[18] and QuTiP [14], which allows us to reproduce and extend the ASP study also for other
molecules in a simple way.
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Chapter 2

Theoretical Background

2.1 Basics of quantum chemistry

In quantum chemistry, the electronic problem consists in finding approximate solutions to the
non-relativistic Schrödinger equation H|φ〉 = E|φ〉 [24]. Here H is a Hamiltonian that describes
a system of nuclei and electrons, usually a molecule. If we denote the position of the Ath nucleus
and the ith electron by RA and ri respectively, and we let riA = |ri − RA|, rij = |ri − rj|
and RAB = |RA −RB| be the distances between any pair electron-nucleus, electron-electron and
nucleus-nucleus, respectively, then, in atomic units the Hamiltonian for N electrons and M nuclei
is

H = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA
∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.1)

MA is the ratio of the mass of the Ath nucleus to the mass of an electron, ZA is the atomic number
of nucleus A, and ∇2

i and ∇2
A are Laplacian operators that involve derivation with respect to the

coordinates of the ith electron and the Ath nucleus. The first and the second term in (2.1) represent
the kinetic energy of the electrons and the nuclei, respectively. The third, fourth and fifth terms
are, respectively, the Coulomb interactions between pairs of electron-nucleus, electron-electron and
nucleus-nucleus.

In general, this is a complicated problem to solve. We know how to find an exact solution to the
Schrödinger equation for the Hydrogen atom Hamiltonian, where N = M = 1. However, even
this simple case requires sophisticated mathematical tricks. In a more general situation, for an
arbitrary number of nuclei and electrons, we can only hope to find an approximate solution after
making some simplifications. One of this simplifications that is key to quantum chemistry is the
Born-Oppenheimer Approximation [24]. Since nuclei are much heavier than electrons, its kinetic
energy will be much smaller. Thus, we can also think that nuclei are fixed as compared to the
electrons. Hence in the Born-Oppenheimer approximation we eliminate the second kinetic term
in equation (2.1) and we treat the RA’s as constant parameters. The last term in equation (2.1)
is also treated as a constant and only needs to be taken into account when calculating the total
energy. After these simplifications, what remains is called the electronic Hamiltonian and it writes

Helec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
. (2.2)
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This Hamiltonian describes the motion of N electrons in the field of M point charges. Notice
that the solutions to the Schrödinger equation Helec|φelec〉 = Eelec|φelec〉 will depend on the
set of nuclei coordinates used, i.e., |φelec〉 = |φelec({ri}; {RA})〉, and also the energy will be
Eelec = Eelec({RA}). The total energy is calculated adding the constant term we dropped before.
Once the electronic problem is solved, a new Hamiltonian for the nuclei can be defined taking into
account the mean field of the electrons. However, throughout this work we will concentrate only
on the electronic problem with the Hamiltonian (2.2).

The electronic Hamiltonian (2.2) only involves the spatial coordinates of the electrons, but to
fully describe an electron it is also necessary to specify its spin. Therefore, we will introduce
two orthonormal spin functions, α(ω) and β(ω), corresponding to spin up and down, respectively.
ω is an unspecified spin variable. Thus in this formalism each electron is described using four
coordinates, namely xi = {ri, ωi}. Then, the wave function of an N -electron system will be
Φ(x1, ...,xN). This function must satisfy the Schrödinger equation for the electronic Hamiltonian
and, because we consider the electrons as indistinguishable fermions, it must be antisymmetric
with respect to the exchange of any two electrons. This means that Φ(x1, ...,xi, ...,xj, ...,xN) =

−Φ(x1, ...,xj, ...,xi, ...,xN). To achieve this, we shall first consider single electron wave functions,
these are called orbitals. A spatial orbital ψi(r) is a function that describes the spatial position of
an electron, so that |ψi(r)|2dr is the probability of finding the electron in a volume dr surrounding
point r. The spin orbitals take into account the possible spin of the electron, and they are defined
as χ2i−1(x) = ψi(r)α(ω) and χ2i(x) = ψi(r)β(ω). If we dropped the last term in (2.2), then we
would be left with a Hamiltonian describing non-interacting electrons. Hence, using a separation
of variables we could find a wave function of the form ΨHP (x1, ...,xN) = χi(x1)χj(x2) · · ·χk(xN).
ΨHP is called a Hartree product, the problem is that it distinguishes between electrons and is not
yet antisymmetric. However, we can transform it into a valid wave function if we consider the
determinant

Ψ(x1, ...,xN) =
1

(N !)1/2

∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)
...

...
...

χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Ψ(x1, ...,xN) is called a Slater determinant, and it has N electrons occupying N orbitals with-
out specifying which electron is in which orbital. As a short-hand notation we will denote
Ψ(x1, ...,xN) = |χiχj · · ·χk〉. The antisymmetry |χi · · ·χp · · ·χq · · ·χk〉 = −|χi · · ·χq · · ·χp · · ·χk〉
is clear from the properties of the determinant. Then, the full interacting N -electron wave function
is expanded as a sum of Slater determinants Φ =

∑
k ckΨk. The procedure in which an infinite set

of N -electron Slater determinants is used to approximate the wave function is called configuration
interaction (CI). For actual computations it is not possible to use an infinite set, hence given a
set {χi} of 2K single electron spin orbitals, the wave function can be expanded in terms of the(

2K
N

)
possible Slater determinants, this is known as full configuration interaction (FCI). Some other

approximations try to use much less Slater determinants, for instance, the Hartree-Fock approxi-
mation approximates the N -electron wave function by a single Slater determinant.

The electronic Hamiltonian (2.2) is often written in second quantization form. We can define
creation {a†i} and annihilation {ai} fermionic operators satisfying the anticommutation relations
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{ai, aj} = 0, {a†i , a
†
j} = 0 and {ai, a†j} = δij , where {A,B} ≡ AB +BA. If we define a normalized

vacuum state |vac〉 that represents a system containing no electrons, then any Slater determi-
nant can be defined by applying a succession of creation operators to this state. For instance,
|χiχj · · ·χk〉 = a†ia

†
j · · · a

†
k|vac〉. All the properties of Slater determinants are immediately derived

from the previous anticommutation relations. They also imply that it is not possible to create two
electrons in the same orbital, as expected from the Pauli exclusion principle. Then, the electronic
Hamiltonian (2.2) is written in terms of the creation and annihilation operators as

H =
∑
ij

hija
†
iaj +

1

2

∑
ijkl

hijkla
†
ia
†
jakal, (2.4)

where

hij =

∫
dx1χ

∗
i (x1)

(
−1

2
∇2

1 −
∑
A

ZA
r1A

)
χj(x1), (2.5)

and
hijkl =

∫
dx1dx2χ

∗
i (x1)χ∗j (x2)r−1

12 χk(x1)χl(x2). (2.6)

In (2.4) we are summing over all possible spin orbitals. The one (2.5) and two-body (2.6) integrals
depend on the basis set used to represent the spin orbitals.

2.1.1 Mapping fermions to qubits

In order to simulate the electronic Hamiltonian (2.4) with a quantum computer, it must first be
mapped to operate on qubits. Qubits are the quantum equivalent of classical bits, and instead of
being in either a 0 or a 1 state they can be in any superposition |ψ〉 = α|0〉 + β|1〉. Here α and
β are complex numbers such that |α|2 + |β|2 = 1, and {|0〉, |1〉} are two orhonormal states that
form a computational basis. They can be represented mathematically by two orthonormal vectors,
namely

|0〉 =

1

0

 , |1〉 =

0

1

 . (2.7)

The operators that act on qubits must preserve the unit norm, that is why unitary operators U
which satisfy UU† = I are considered. The ones that concern us are the Pauli operators

σ0 = I =

1 0

0 1

 , σz =

1 0

0 −1

 , σx =

0 1

1 0

 , σy =

0 −i

i 0

 . (2.8)

On the other hand, a system of n qubits can exist in any superposition of 2n basis states, where
each of these basis states can be obtained from a tensor product of |0〉’s and |1〉’s. We will write
them as

|z0, z1 · · · , zn−1〉 = |z0〉 ⊗ |z1〉 ⊗ · · · ⊗ |zn−1〉, (2.9)

with zi ∈ {0, 1} for all i. The previous Pauli operators can also be generalized to act on the pth
qubit:

σ{x,y,z}p = I0 ⊗ · · · ⊗ σp{x,y,z} ⊗ · · · ⊗ In−1. (2.10)

To map fermions to qubits, we need to specify how to map the fermionic basis states, in our case
the Slater determinants, to the qubit basis states, and how to map the fermionic operators ai and
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a†i to qubit operators. There is not a unique way of doing this, and actually, these mappings are
not trivial because whereas electrons are indistinguishable fermions, qubits are distinguishable.

The notation of Slater determinants |χiχj ...χk〉 means that the spin orbitals χi, χj , ..., χk are oc-
cupied by an electron, and that the {χl} that do not appear are not occupied. We can change
to an equivalent notation that specifies all possible 2K spin orbitals, namely |n0, n1, ..., n2K−1〉.
The {ni} are the occupation numbers of the orbitals {χi}, and for indistinguishable fermions
they can either take the value 0 if the orbital is empty, and 1 if it is occupied. This notation
is called occupation number representation, and it suggests a very straightforward mapping to
a system of 2K qubits. Namely, we can simply consider |z0, z1, ..., z2k−1〉 where zi = ni. Now
|z0, z1, ..., z2k−1〉 is a basis vector in a Hilbert space of 2K qubits. The only difficulty is to de-
fine a set of qubit operators that inherits the same properties of fermionic operators acting on
Slater determinants. Note that ap|n0, n1, ..., 0p, ..., n2K−1〉 = 0 and ap|n0, n1, ..., 1p, ..., n2K−1〉 =

(−1)
∑p−1

i=0 ni |n0, n1, ..., 0p, ..., n2K−1〉, thus we see that an appropriate definition for an equivalent
qubit operator is

ap → qJWp :=
1

2
(σxp + iσyp)σz0 · · ·σzp−1. (2.11)

This mapping is called the Jordan-Wigner transform. Note that the qubit operator not only acts
on the pth qubit, but also on the qubits from 0 to p − 1. This can be inconvenient for large 2K

because simulating these operators with a quantum circuit might require a huge amount of gates.

The funtion of the σz product in (2.11) is to multiply by 1 or −1 depending on the parity of∑p−1
i=0 ni. We see that storing these parities could actually be useful. Hence, we can think of

defining the qubit basis states as |z0, z1, ..., z2k−1〉 where zi =
∑i
j=0 nj mod (2). It is clear that if

we know all the zi, then we can recover the occupation numbers ni and vice versa. After applying
ap to the fermionic state we would need to update the parity of the qubits from p to 2K − 1 in the
qubit state, thus the corresponding qubit operator is

ap → qparp :=
1

2
(σxpσ

z
p−1 + iσyp)σxp · · ·σx2K−1. (2.12)

This mapping is called the parity transform. It represents no advantage with respect to the Jordan-
Wigner transform because the corresponding qubit operators also act on several qubits. In fact,
both the Jordan-Wigner and the parity transform qubit operators act on O(2K) qubits. We could
think of a transformation that was something in between the two, with some minimal sets of qubits
encoding the occupation numbers and the parities. Then, the corresponding qubit operators would
be

ap → qBKp :=
1

2
(σxU(p)σ

x
pσ

z
P (p) + iσxU(p)σ

y
pσ

z
P (p)), (2.13)

where σxU(p) =
∏
j∈U(p) σ

x
j and σzP (p) =

∏
j∈P (p) σ

z
j . U(p) denotes the set of qubits that need to be

updated upon flipping the occupation number np, and P (p) the set of qubits that encode the sum∑p
i=0 ni. The Bravyi-Kitaev is an optimal transformation in the sense that its U(p) and P (p) sets

only involve O(log 2K) qubits.
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2.2 Adiabatic Quantum Computing

The adiabatic theorem of quantum mechanics states that a system will remain in its instantaneous
eigenstate (e.g. the ground state) if a perturbation acts on the system sufficiently slowly. Another
condition that is necessary is the existence of a non-vanishing energy gap between that eigenstate
and the rest of the eigenspectrum throughout the evolution.

This theorem has found interesting applications, one of them is adiabatic quantum computing
(AQC). AQC works by preparing a simple initial eigenstate of a Hamiltonian HB , and then letting
it evolve slowly for a certain time τ under a time dependent Hamiltonian Hτ (t) that goes from
HB = Hτ (0) to HP = Hτ (τ). Here, HP is the Hamiltonian of the system of interest, whose
corresponding eigenstate encodes the solution to the computational problem. If the evolution has
been done "correctly", then the evolved state should have a large overlap with the eigenstate of HP .

To be more precise, we can define the adiabatic transition parameter s ≡ t/τ ∈ [0, 1] and consider
H(s) = Hτ (τs). This way τ controls the rate of change of the Hamiltonian. We will consider
interpolating Hamiltonians of the type

H(s) = A(s)HB +B(s)HP (2.14)

where A(s) is a monotonically decreasing function from 1 to 0 and B(s) is a monotonically in-
creasing function from 0 to 1. The quantum system will evolve according to the time dependent
Schrödinger equation

~
τ

d

ds
|ψτ (s)〉 = −iH(s)|ψτ (s)〉. (2.15)

Following the notation of [10], we denote by |`; s〉 the instantaneous eigenstates of the system, so
that H(s)|`; s〉 = E`(s)|`; s〉. The {E`(s)} are the instantaneous eigenvalues, and we will suppose
that they follow the ordering E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s) where N is the dimension of the
Hilbert state. Suppose that the initial state is prepared in the ground state of HB = H(0), i.e.,
|ψτ (0)〉 = |` = 0, s = 0〉. Then if E1(s) − E0(s) > 0 for all s ∈ [0, 1], according to the adiabatic
theorem:

lim
τ→∞

|〈` = 0; s = 1|ψτ (1)〉| = 1, (2.16)

where |ψτ (1)〉 is the final state of the evolution. However, in practice making τ =∞ would not be
of much use. A better study of the adiabatic theorem tells us that by taking

τ � ε

(∆Emin)2
, (2.17)

where

ε = max
s∈[0,1]

|〈` = 1, s|dH(s)

ds
|` = 0, s〉|, and ∆Emin = min

s∈[0,1]
∆E = min

s∈[0,1]
E1(s)− E0(s), (2.18)

we could make |〈` = 0; s = 1|ψτ (1)〉| as close to one as we wanted. ∆Emin is called the minimum
gap, and as we have seen, it determines the speed at which the transition from HB to HP can be
made.

Adiabatic state preparation is just one of the applications of AQC among many others, such as
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solving certain types of classical optimization problems [9, 6].

2.3 Entanglement entropy

Entanglement is a property that differentiates quantum from classical systems. It appears when the
state of one of the parts of the system cannot be described independently from the state of the oth-
ers. For instance, in a system of two qubits A and B the state |ΨAB〉 = (|0〉A⊗|1〉B+|1〉A⊗|0〉B)/

√
2

is entangled because it cannot be written as |φ1〉A ⊗ |φ2〉B . The latter is called a product state.

A measure of the entanglement of a system is given by the entanglement entropy, but before we
explain how to obtain it, we first need to define the concepts of density matrix and partial trace.
Given a pure state |ψ〉, its density matrix is defined as ρ = |ψ〉〈ψ|. Sometimes we might not
now for sure if the system was prepared in a pure state |ψ〉, but rather we might now that with
probability p1 it is in state |ψ1〉, with probability p2 it is in |ψ2〉, etc. This situation is denoted by
{pi, |ψi〉}, and in this case we say that we have an ensemble of pure states, or a mixed state. The
corresponding density matrix is defined by ρ =

∑
i=1 pi|ψi〉〈ψi|. For example, the density matrix

of the entangled two-qubit pure state we discussed before is

ρAB =
|0〉〈0|A ⊗ |1〉〈1|B + |0〉〈1|A ⊗ |1〉〈0|B + |1〉〈0|A ⊗ |0〉〈1|B + |1〉〈1|A ⊗ |0〉〈0|B

2
.

In linear algebra the trace is a linear mapping, and for a square matrix it is defined as the sum
of the elements in its diagonal. In the notation we use for density matrices, it can be shown that
the trace is given by Tr(|ψ〉〈ψ|) = 〈ψ|ψ〉. If we have a density matrix corresponding to a state
in the composite Hilbert space HA ⊗ HB , then it is possible to define a partial trace by taking
the trace over only one of the parts of the system. For example, TrB(|φ1〉〈φ1|A ⊗ |φ2〉〈φ2|B) =

|φ1〉〈φ1|A Tr(|φ2〉〈φ2|B) = |φ1〉〈φ1|A since 〈φ2|φ2〉 = 1. In the two entangled qubit example, taking
the partial trace with respect qubit B gives

ρA = TrB(ρAB) =
|0〉〈0|A〈1|1〉+ |0〉〈1|A〈1|0〉+ |1〉〈0|A〈0|1〉+ |1〉〈1|A〈0|0〉

2

=
|0〉〈0|A + |1〉〈1|A

2
.

Notice that in both cases we obtain a reduced density matrix. However, if the system is entangled
then the reduced density matrix corresponds to a mixed state, this is a general fact. Now for a
system that can be divided in two parts, the entanglement entropy is defined as the Von Neumann
entropy of the reduced density matrix with respect to one of the parts, namely

S(ρA) = −Tr(ρA log2 ρ
A) = −Tr(ρB log2 ρ

B) = S(ρB). (2.19)

The result is independent of which part is chosen, either A or B, provided that the original density
matrix ρAB came from a pure state. The best way of computing the Von Neumann entropy
is to calculate the eigenvalues of the density matrix, which can always be done because density
matrices are hermitian and positive semi-definite. Then, S(ρ) = −

∑
k λk log2 λk, where λk are the

eigenvalues of ρ. It can be shown that the Von Neumann entropy of a pure state density matrix
is zero. On the other hand, for a maximally mixed state the Von Neumann entropy is log2(N),
where N is the dimension of the Hilbert space. For the entangled two-qubit example we have that
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S(ρA) = log2(2) = 1. This is the maximum value that the entanglement entropy could take, thus
we deduce that the original |ΨAB〉 was maximally entangled.
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Chapter 3

Methodology

Obtaining the electronic Hamiltonian in second quantization form and mapping it to qubits.
We study the adiabatic preparation of the ground state of the H2 and the LiH molecules. As
explained in the theory section, the electronic Hamiltonian depends on the fixed positions of the
nuclei. Since both H2 and LiH are diatomic molecules, we only need to specify the distance r
between the two nuclei that form the molecule. Thus, we consider the electronic Hamiltonian (2.4)
for several inter-atomic distances ranging from 0.2r0 to 4r0 for H2, and from 0.2r0 to 2.1r0 for LiH.
Here r0 denotes the inter-atomic distance at the equilibrium geometry of the molecules, which is
r0 = 0.74 Å for H2, and r0 = 1.45 Å for LiH. Once we have fixed the inter-atomic distance,
we compute the coefficients hij (2.5) and hijkl (2.6) with the PySCF module of the OpenFermion
package [18]. These one- and two-body integrals depend on the basis set used to express the spin
orbitals, in this case we use a STO-3G basis, which approximates spin orbitals of the Slater type as
the sum of three Gaussian functions. The dihydrogen molecule is optimally described by four spin
orbitals, whereas the lithium hydride would in principle require 12 spin orbitals in the minimal
basis. However, to ease our calculations we can specify an active space, namely we can assume
that the lowest energy spatial orbital of LiH is fully occupied and the higher energy ones are not
accessible. After this simplification, we only need to consider four spin orbitals for the lithium
hydride. Once we have obtained the electronic Hamiltonian in second quantization form (2.4), we
also use OpenFermion to compute the Jordan-Wigner and the Bravyi-Kitaev transforms. Notice
that for both H2 and LiH, their electronic Hamiltonians are mapped into a four qubit Hilbert
space. Since for the rest of the calculations we use the QuTiP package [14], we have written a
Python function that transforms OpenFermion qubit Hamiltonians to QuTiP quantum objects.
See also the code appendix B.

Writing the time-dependent Hamiltonian and solving the Schrödinger equation.
Using the same notation as in the theory section, we identify the final Hamiltonian HP of the
adiabatic evolution with the electronic Hamiltonian of either H2 or LiH once mapped to qubits.
As initial Hamiltonian we use

HB =
1

2

3∑
i=0

(1− σxi ). (3.1)

Note that the ground state of HB is |+,+,+,+〉1, which in the computational basis becomes an

1|+〉 = |0〉+|1〉√
2

denotes the eigenstate of σx with eigenvalue 1.
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homogeneous superposition of all the basis states. Thus this choice of initial Hamiltonian describes
a general situation in which no information about the true ground state of HP was available. Then,
we consider adiabatic Hamiltonians of the form

H(s) = (1− sα)HB + sαHP , (3.2)

where s = t/τ ∈ [0, 1], and τ is the total time of the evolution. Unless otherwise specified, we
set α = 1 so that the interpolation path between HB and HP is linear. At some point we also
investigate non-linear paths by considering different 0 < α < 1 exponents.

To study the adiabatic state preparation of the ground states of H2 and LiH, we evolve the non-
degenerate ground state of the initial Hamiltonian HB under the time dependent Hamiltonian
(3.2) during a certain time τ . We try different evolution times ranging from 1 ~E−1

h to 30000

~E−1
h . Note that 1 ~E−1

h ≈ 10−17 s is the atomic unit for time, and also 1 Eh ≈ 10−18 J is the
atomic unit for energy. To obtain the instantaneous states along the evolution we solve the time
dependent Schrödinger equation (2.15) using the QuTiP mesolve function. We also use QuTiP
to calculate the eigenvalues and eigenstates of all the Hamiltonians considered, and the overlaps
between different states. Finally, just to clarify the notation:

• |` = 0; s〉 denotes the instantaneous ground state of H(s). In general, |` = i; s〉 denotes the
ith eigenstate of H(s) with energy Ei(s).

• |ψτ (s)〉 denotes the instantaneous evolved state.

• |ψtarget〉 denotes the ground state of the final Hamiltonian Hp. In fact, |ψtarget〉 = |` = 0; 1〉.

The final probability of success P for a certain τ is quantified by the square overlap |〈ψτ (1)|ψtarget〉|2.
We consider that an evolution has been successful if P ≥ 0.99, and we refer to the minimum time
required for a successful evolution as the critical time.

Measuring the entanglement.
We use the entanglement entropy as a measure of the entanglement of a state. To this end, we need
to divide the four qubit system in two parts, which can be achieved in multiple ways. To reduce
this ambiguity we follow the same approach as [12]. We consider any pair of qubits as subsystem
A and the other two as subsystem B. There are in total

(
4
2

)
possible two-qubit partitions, namely

Γ = {[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]}. However, since we are only concerned with pure states,
we have that S(ρ[0,1]) = S(ρ[2,3]), S(ρ[0,2]) = S(ρ[1,3]) and S(ρ[0,3]) = S(ρ[1,2]), so in fact we only
need to consider Γ = {[0, 1], [0, 2], [0, 3]}. Thus our measure of entanglement will be given by the
entanglement entropy maximized over all two-qubit partitions, i.e., Smax2 = maxA∈Γ S(ρA). The
density matrices, the partial traces and the Von Neumann entropies are calculated using QuTiP’s
functions.
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Chapter 4

Results

4.1 Preliminary study

First of all, we have verified that the mapping from fermions to qubits and the transformation from
OpenFermion qubit Hamiltonians to QuTiP quantum objects has been correctly implemented, by
verifying that the ground state energies of the HP Hamiltonians for several inter-atomic distances
coincide with the FCI energies provided by OpenFermion. These FCI energies are shown in the
bottom picture of figure 4.1 together with the Hartree-Fock energies. Remember that the Hartree-
Fock method consists in approximating the electronic ground state by a single Slater determinant,
whereas in the FCI all the possible Slater determinants obtained from a certain set of spin orbitals
are considered. The difference between the Hartree-Fock and the exact energy is called correla-
tion energy, and it is an important quantity in quantum chemistry because it indicates when the
Hartree-Fock approximation works well. For the two molecules, we see that at small inter-atomic
distances the Hartree-Fock method offers a very good approximation to the exact energy, whereas
the correlation energy tends to increase for larger bond lengths. In fact, the entanglement entropy
has been proposed as a measure for this correlation energy [13]. To verify that our calculations
are reasonable, we have also checked that the entanglement entropy of the ground state of H2 and
LiH increases together with the correlation energy, see top picture of figure 4.1. This result is
not surprising, if the ground state is well approximated by a single Slater determinant, then there
is no entanglement because Slater determinants in the occupation number representation can be
written as product states, whereas if a superposition of Slater determinants is required, then the
entanglement is likely to increase. On the other hand, we have also calculated the energy difference
between the ground and the first excited state of the HP Hamiltonians for several inter-atomic
distances. The results can be seen in the middle picture of figure 4.1. This energy difference tends
to decrease for larger r/r0 in both molecules, particularly for H2, thus we can already expect that
it will be more costly to achieve an adiabatic evolution for the larger bond lengths.

Last but not least, to end with the preliminary study we have investigated the evolution of the
energies of H(s) for r/r0 = 1, see figure 4.2. As expected, for s = 0 we have obtained the energies
of HB . Notice that the ground state is non-degenerate, and that during the evolution it maintains
a non-vanishing energy gap with the rest of the eigenspectrum. For s = 1 we get the molecular
energies.
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Figure 4.1: Top: Maximized entanglement entropy of the ground state over all two-qubit partitions
for different bond lengths. Middle: exact energy difference between the ground and the first excited
state. Bottom: comparison between the ground state FCI and Hartree-Fock energies.
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Figure 4.2: Evolution of the energies E0(s), E1(s), E2(s), · · · , E15(s) of the Hamiltonian H(s) for
H2 (left) and LiH (right). To obtain the final Hamiltonian we have set r/r0 = 1 and used the
Jordan-Wigner transform. The bottom line corresponds to the ground state energy.

4.2 Adiabatic state preparation

The energy difference between the ground and the first excited state plays an important role in the
efficiency of adiabatic quantum computing. The minimum value of this energy difference during
the adiabatic evolution is called the minimum gap, and it is known to be the main limiting factor,
see eq. (2.17). In figure 4.3 we show the energy gap for different inter-atomic distances and for
both the Jordan-Wigner (solid line) and the Bravyi-Kitaev (dashed line) transforms. There are a
couple of observations that can be made. First, notice that the minimum gap can happen for any
value of the adiabatic transition parameter. For example, for small bond lengths of the dihydrogen
molecule the minimum gap occurs in the middle of the evolution, whereas for larger r/r0 the
minimum gap tends to happen at the end. Secondly, performing either the Jordan-Wigner or the
Bravyi-Kitaev transform does not modify the eigenvalues of the electronic Hamiltonian, however,
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as we can see in the figure, choosing one or the other can affect the energies of H(s) for s ∈ (0, 1)

resulting in a substantial change in the magnitude of the minimum gap, as it is the case for H2.
We will discuss more about this fact in the next section.
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Figure 4.3: Energy difference between the ground and the first excited state of H(s). Different
bond-lengths are represented with different colors. We use a solid line if the HP Hamiltonian was
obtained via the Jordan-Wigner mapping, and dashed line if it was via the Bravyi-Kitaev.

Then, we have fixed the inter-atomic distance to be the one at the equilibrium geometry of the
molecules, and we have evolved the ground state of HB under the H(s) Hamiltonian for different
evolution times. The square overlap between the evolved state and the target state as a function
of the adiabatic transition parameter can be seen in figure 4.4. For s = 0 this corresponds to
the square overlap of |+,+,+,+〉 and the corresponding electronic ground state, which is quite
small because as we wrote before, our choice of HB made no assumption about the true ground
state of HP . If the evolution is performed sufficiently slowly, then the evolved state remains in
the instantaneous ground state of H(s), see figure 4.5, so the square overlap with the target state
increases as the adiabatic evolution parameter goes to one. On the other hand, if the evolution
is done too rapidly, then the evolved state may acquire enough energy to get excited into the
higher energy eigenstates of H(s). This is more likely to happen in the regions near the minimum
gap, since the energy barrier is smaller there. In fact, in figure 4.5 we see that for unsuccessful
evolutions (τ = 5 ~E−1

h ) the overlap of |ψτ (s)〉 with |` = 0; s〉 decays at the same time that the
overlap with |` = 1; s〉 increases, and this process gets accelerated near the minimum gap. However,
notice that once passed the minimum gap, also the overlap between |ψτ (s)〉 and |` = 1; s〉 decays.
This is because from |` = 1; s〉 the evolved state may also have access to the other higher energy
eigenstates of H(s) provided that the corresponding energy gaps are sufficiently small.
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Figure 4.4: Square overlap between the evolved and the target states for different times τ in atomic
units (~E−1

h ). The inter-atomic distance has been fixed at r/r0 = 1. We used both mappings to
obtain HP , Jordan-Wigner (solid line) and Bravyi-Kitaev (dashed line).
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Figure 4.5: Square overlap of the evolved state with the two lowest energy eigenstates of H(s) for
successful and unsuccessful evolutions. The inter-atomic distance is r/r0 = 1 and we show only
the results for the Jordan-Wigner mapping. The dotted and dashed line indicates the energy gap
throughout the evolution.

4.3 Improving the evolution time

If the time required for a successful adiabatic evolution is too large, then the adiabatic state
preparation may become a bottleneck in the performance of quantum chemistry simulations with
quantum computers. This is why there have been several proposals to speed up the preparation
process. For example, [25, 4] suggested using different initial Hamiltonians that do require some
knowledge about the true ground state of HP , such as its Hartree-Fock energy. [25] also showed
for methylene, that having an initial state with a large overlap with the target state could signifi-
cantly reduce the critical time. In that sense, our choice of initial Hamiltonian HB , despite being
the most general, is far from optimal. See figure 4.6, where for the H2 molecule, we present the
overlap of the evolved state with the states of the computational basis throughout the evolution.
We have used the Jordan-Wigner mapping since in this case the qubit basis states coincide with
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(a) τ = 5 ~E−1
h (b) τ = 75 ~E−1

h

Figure 4.6: Results for the H2 molecule. Overlap of the evolved state with the qubit basis states
along the evolution. The HP Hamiltonian has been obtained via the Jordan-Wigner mapping
so the qubit basis states coincide with the occupation number representation. The inter-atomic
distance has been fixed at r/r0 = 1. The red line indicates the adiabatic parameter for which the
minimum gap occurs (a) unsuccessful evolution, (b) successful evolution.

the occupation number representation and it is easier to interpret which are the occupied orbitals.
We do know that the dihydrogen molecule has two electrons available, in fact, for r/r0 = 1 the
electronic ground state consists mostly of |1, 1, 0, 0〉 (the Hartree-Fock ground state) with a small
contribution from the doubly excited state |0, 0, 1, 1〉, and this contribution grows for larger inter-
atomic distances, see appendix A. Hence, it is unnecessary to consider the basis states with a total
occupation number different from two, such as |0, 0, 0, 0〉, |1, 0, 0, 0〉, |1, 1, 1, 0〉, etc., and finding an
appropriate initial Hamiltonian HB which excluded these states could ease the adiabatic evolution.

On the other hand, if the position of the minimum gap is known, then it is possible to reduce the
total time of the evolution by decreasing the transition speed in the regions near the minimum gap
and increasing it everywhere else. This means finding other interpolating functions A(s) and B(s)

which are not necessarily linear in s. Since we have observed that for the LiH molecule the min-
imum gap occurs near the end of the evolution, we have studied how the non-linear interpolation
of (3.2) with 0 < α < 1 affects the critical time. Notice that this choice makes the evolution faster
at the beginning and slower at the end. The results are shown in figure 4.7 (a). We have observed
a meaningful improvement in the critical times required for α = 0.5 and α = 0.2 with respect to
the linear interpolation, α = 1. However, we must mention that for α ≤ 0.1 we have found critical
times above 40000 ~E−1

h . One possible reason for this is that the evolution rate becomes infinitely
fast for s approaching zero, in fact dH(s)/ds diverges. Another reason could be that the system
spends more time in a region with a smaller energy gap, see figure 4.7 (b). In the same line of
finding other interpolating paths, it has also been proposed adding a catalyst Hamiltonian that
appeared only for s ∈ (0, 1) to aid in the evolution [8].

Overall, the magnitude of the minimum gap is the most limiting factor in the speed of a successful
adiabatic evolution. In figure (4.3) we have shown that the size of the minimum gap could be
affected by the choice of either the Jordan-Wigner or the Bravyi-Kitaev mappings, and this was
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Figure 4.7: Results for the LiH molecule. The HP Hamiltonian has been obtained via the Jordan-
Wigner mapping.(a) Minimum time required for a successful evolution (final overlap between the
evolved and the target state of at least 0.99). The different lines correspond to different exponents
α. (b) Results shown correspond to the equilibrium geometry. Top: energy gap for different
exponents. Bottom: The non-linear interpolation makes the evolution faster at the beginning,
when the gap is larger, and slower at the end.
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Figure 4.8: Results for the H2 molecule. The red points represent the Bravyi-Kitaev final Hamilto-
nian, and the blue ones the Jordan-Wigner. (a) Minimum times required for a successful evolution.
The inset represents the ratio between these two times. (b) Critical time as a function of the min-
imum gap. The points have been obtained from different inter-atomic distances. The solid lines
represent the fit of the data points to a function of the type y = a/x2 + b. For Jordan-Wigner we
found a = (1.59± 0.05) ~Eh, b = (1.5± 0.7)× 102 ~E−1

h , and for Bravyi-Kitaev a = (3.21± 0.05)
~Eh, b = (1.6± 0.7)× 102 ~E−1

h .

particularly dramatic for the H2 molecule. In figure 4.8 (a) we see how for several inter-atomic
distances the Jordan-Wigner transform offers successful evolution times from two to ten times faster
than the Bravyi-Kitaev transform. In figure 4.8 (b) we have represented for both mappings the
critical times as a function of the size of the minimum gap. By fitting these data points to a function
of the type y = a/x2+b, we have verified the scaling of the critical times as O((∆Emin)−2), which is
the result expected from the theory, see eq. (2.17). On the other hand, the values of the parameter
a are different for the Jordan-Wigner and the Bravyi-Kitaev transforms, although they have the
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same order of magnitude. Hence, for the H2 molecule, we attribute the different performance of
the two mappings to the different minimum gaps that they provide (figure 4.3 (a)), rather than to
some intrinsic difference. However, when increasing the number of spin orbitals considered, and
therefore, the number of qubits, the Bravyi-Kitaev transform is supposed to be advantageous in
actual simulations with a quantum computer due to the lower number of qubit operations that it
requires.

4.4 The role of entanglement
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Figure 4.9: Results for the H2 molecule at the equilibrium geometry (r/r0 = 1). The solid lines
represent the maximized entanglement entropy of the evolved state, and the dashed grey line the
maximized entanglement entropy of the instantaneous ground state. The dashed and dotted line
is the energy gap along the evolution. Notice that the maximum of the entanglement entropy of
|` = 0; s〉 happens near the minimum gap.

In figure 4.9 we show the maximized entanglement entropy of the evolved state for different evo-
lution times. There are a couple points to consider. First, it can be seen that as the time of
the evolution increases, the entanglement entropy of the evolved state tends to that of the instan-
taneous ground state |` = 0; s〉. This fact is not surprising, because in successful evolutions we
expect the evolved state to remain in the instantaneous ground state of H(s). On the other hand,
shorter transition times, and therefore, non-adiabatic evolutions, give rise to final states with large
entanglement entropy. This phenomenon has also been observed in AQC applied to solve classical
optimization problems [12]. In fact, the authors of [12] were able to find an upper bound for the
final entanglement entropy in terms of the final probability of success:

Sendl ≤ −P log2(P )− (1− P ) log2(1− P ) + (1− P ) log2(2l − 1), (4.1)

valid for P > 1/e and if the target state is not entangled. Here, l is the number of qubits in the
subsystem considered, which in our case is 2. However, there is a fundamental difference between
AQC for adiabatic state preparation, and for solving optimization problems. Namely, in ASP
the final Hamiltonian describes a molecule, which is a quantum system and therefore its ground
state might present entanglement. On the other hand, the final Hamiltonians used in optimization
problems are just classical cost functions whose terms have been mapped to Pauli operators. Thus

19



if there is a unique solution, its ground state is a product state. As we can see in figure 4.10
(a), this fact makes the bound (4.1) not valid in general for ASP. Actually, its accuracy will be
linked to that of the Hartree-Fock approximation. In figure 4.10 (b) we also see the maximized
entanglement entropy of the evolved state as a function of the total evolution time. For evolution
times close to 0 ~E−1

h , the entanglement is small because the system does not have time to change
substantially from the initial state, which was not entangled. However, entanglement does grow
rapidly. For larger total evolution times the entanglement of the final state decays slowly until it
reaches the entanglement entropy of the target state, as expected in successful evolutions.
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Figure 4.10: Results for the H2 molecule. (a) Entanglement of the final state as a function of the
final probability of success. The grey dashed line represents the bound for classical optimization
problems (4.1). The electronic ground state for r/r0 = 2 is more entangled than that for r/r0 = 1,
thus the exceeding of the bound becomes more obvious. The different points have been obtained
from different total evolution times. (b) Top: final probability of success for different evolution
times. Bottom: the points represent the final entanglement and the grey lines the entanglement
along the evolution.

In figure 4.9 we also see that the maximum entanglement entropy of the instantaneous ground
state seems to happen near the minimum gap. We have verified that this is a general fact by
representing the adiabatic parameter with maximum entanglement of the instantaneous ground
state vs. the adiabatic parameter with minimum gap energy, see figure 4.11. In fact, we have
established that both adiabatic parameters are linearly correlated with a slope slightly above 1.
Some authors have pointed out that this could be a consequence of systems undergoing quantum
phase transitions during adiabatic evolutions near the minimum gap [16, 20]. It has been well
studied that the entanglement entropy of the ground state of many quantum spin systems scales
at quantum phase transitions [26, 17]. We have also observed that the maximum entanglement
entropy of the instantaneous ground state and the minimum gap are inversely correlated, see figure
4.11 (b). This means that entanglement will be larger for smaller minimum gaps.
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Figure 4.11: Results for the H2 molecule. The points of both subfigures were obtained by col-
lecting the results for different inter-atomic distances. (a) Adiabatic parameter with maximum
entanglement entropy of the instantaneous ground state vs. adiabatic parameter with minimum
gap energy. The data points are linearly correlated and the dashed line represents the linear
fit. For the Jordan-Wigner points the results of the linear regression are: R2 = 0.999, slope
1.20 ± 0.02, intercept −0.22 ± 0.02; and for the Bravyi-Kitaev: R2 = 0.999, slope 1.11 ± 0.02,
intercept −0.11± 0.02. (b) Magnitude of the maximum entanglement of the instantaneous ground
state vs. magnitude of the minimum gap.
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Chapter 5

Conclusion

While developing this project we have learned about the potential of using existing Python pack-
ages, namely OpenFermion [18] and QuTiP [14], for the classical simulation of quantum systems.
These packages, combined with our own code, have allowed us to perform a study of the adiabatic
state preparation (ASP) of the ground states of dihydrogen and lithium hydride, which otherwise
would have required expert knowledge of computational chemistry methods.

With regard to the ASP study, among other results, we have observed that the minimum energy
gap can appear for any value of the adiabatic transition parameter. In contrast to previous works,
we have performed and compared both, the Jordan-Wigner and the Bravyi-Kitaev transforms,
rather than focusing only on one fermion to qubit mapping. This has allowed us to see that the
magnitude of the minimum gap may also depend on the mapping used to obtain the final Hamilto-
nian. Guaranteeing a short evolution time for a successful evolution is key in the efficiency of ASP.
Thus we have discussed some possible ways in which this time can be reduced. The conclusion
we draw is that having a good knowledge of the position and magnitude of the minimum gap is
fundamental to design optimal adiabatic evolution strategies. In fact, we have seen that the en-
tanglement entropy can constitute a good indicator of both, the position and the magnitude of the
minimum gap, which is backed up by the analogy of adiabatic quantum evolutions with quantum
phase transitions.

This work can also be extended in several directions. For instance, we have observed that the upper
bound for the final entanglement entropy (4.1) in terms of the final probability of success is not
valid for entangled target states. Thus, it could be useful to generalize the bound (4.1) to adiabatic
quantum computing (AQC) problems whose target ground state might present entanglement, such
as ASP and the electronic ground states considered in this work. Our code also allows extending
the ASP study to other molecules without further complications, as long as the number of spin
orbitals considered is kept under 11 or 12, which are the dimensions that QuTiP can manage well.
However, the calculations might become substantially slow. Finally, some works in AQC also look
at the scaling of the gap and other magnitudes with the number of qubits. It could be worth doing
similar studies by increasing the number of spin orbitals considered.
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Appendix A

Complementary results

A.1 Occupation number representation

The following tables present the square overlap of the true ground states of H2 and LiH with the
basis states in the occupation number representation for different inter-atomic distances.

Table A.1: Square overlap between the ground state of H2 and the basis functions for different
inter-atomic distances.

Basis r/r0 = 1 r/r0 = 2 r/r0 = 3

|0, 0, 0, 0〉 0 0 0

|0, 0, 0, 1〉 0 0 0

|0, 0, 1, 0〉 0 0 0

|0, 0, 1, 1〉 0.01267 0.12058 0.34870

|0, 1, 0, 0〉 0 0 0

|0, 1, 0, 1〉 0 0 0

|0, 1, 1, 0〉 0 0 0

|0, 1, 1, 1〉 0 0 0

|1, 0, 0, 0〉 0 0 0

|1, 0, 0, 1〉 0 0 0

|1, 0, 1, 0〉 0 0 0

|1, 0, 1, 1〉 0 0 0

|1, 1, 0, 0〉 0.9873 0.87942 0.65130

|1, 1, 0, 1〉 0 0 0

|1, 1, 1, 0〉 0 0 0

|1, 1, 1, 1〉 0 0 0
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Table A.2: Square overlap between the ground state of LiH and the basis functions for different
inter-atomic distances.

Basis r/r0 = 1 r/r0 = 2

|0, 0, 0, 0〉 0 0

|0, 0, 0, 1〉 0 0

|0, 0, 1, 0〉 0 0

|0, 0, 1, 1〉 0.00031 0.03852

|0, 1, 0, 0〉 0 0

|0, 1, 0, 1〉 0 0

|0, 1, 1, 0〉 3× 10−5 0.02162

|0, 1, 1, 1〉 0 0

|1, 0, 0, 0〉 0 0

|1, 0, 0, 1〉 3× 10−5 0.02162

|1, 0, 1, 0〉 0 0

|1, 0, 1, 1〉 0 0

|1, 1, 0, 0〉 0.99964 0.91823

|1, 1, 0, 1〉 0 0

|1, 1, 1, 0〉 0 0

|1, 1, 1, 1〉 0 0

A.2 Adiabatic evolutions

The figures presented in this section show the square overlap of the evolved states with the compu-
tational basis states along the evolutions. Figure A.1 shows the results for the dihydrogen molecule
and for different inter-atomic distances, and figure A.2 shows the analogous results for the lithium
hydride molecule. The times τ used are enough to provide successful adiabatic evolutions.
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(a) r/r0 = 1, τ = 75 ~E−1
h (b) r/r0 = 2, τ = 2000 ~E−1

h

(c) r/r0 = 3, τ = 30000 ~E−1
h

Figure A.1: Results for H2. Overlap of the evolved state in a successful adiabatic evolution with
the qubit basis vectors of the Jordan-Wigner mapping, equivalents to the occupation number
representation. The red line represents the adiabatic transition parameter for which the minimum
energy gap occurs. For large r/r0 we observe a strong transition just before this gap.
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(a) r/r0 = 1, τ = 3000 ~E−1
h (b) r/r0 = 2, τ = 10000 ~E−1

h

Figure A.2: Results for LiH. Overlap of the evolved state in a successful adiabatic evolution
with the qubit basis vectors of the Jordan-Wigner mapping, equivalents to the occupation number
representation. The red line represents the adiabatic transition parameter for which the minimum
energy gap occurs. For large r/r0 we observe a strong transition just before this gap.
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A.3 Entanglement results of the lithium hydride

In the Results chapter we have preferred to concentrate on the results for the entanglement of
the dihydrogen molecule, because the different inter-atomic distances offered very diverse positions
and magnitudes of the minimum energy gap, which made the analysis clearer. However, notice
that for LiH the minimum gap and the maximum entanglement of the instantaneous ground state
also happen around the same moment of the adiabatic evolution, and that the magnitudes of the
maximum entanglement and the minimum energy gap are inversely correlated.
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Figure A.3: Results for the LiH molecule. The points of both subfigures were obtained by col-
lecting the results for different inter-atomic distances. (a) Adiabatic parameter with maximum
entanglement entropy of the instantaneous ground state vs. adiabatic parameter with minimum
gap energy. (b) Magnitude of the maximum entanglement of the instantaneous ground state vs.
magnitude of the minimum gap.
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Appendix B

Code

Generating the electronic Hamiltonians in second quantization form and performing the Jordan-
Wigner and Bravyi-Kitaev transforms with OpenFermion.

1 # -------- H2 molecule -----------
2 import openfermion
3 from openfermion.transforms import get_fermion_operator
4 from openfermion.transforms import jordan_wigner
5 from openfermion.transforms import bravyi_kitaev
6 from openfermion import FermionOperator
7 from openfermion.chem import MolecularData
8 from openfermionpyscf import run_pyscf
9

10

11 bond_length = 0.74
12 geometry = [[’H’ ,[0,0,0]],[’H’ ,[0,0, bond_length ]]]
13 basis = ’sto -3g’
14 multiplicity = 1
15 charge = 0
16 h2_molecule = MolecularData(geometry , basis , multiplicity , charge)
17

18 h2_molecule = run_pyscf(h2_molecule ,
19 run_mp2 = True ,
20 run_cisd = True ,
21 run_ccsd = True ,
22 run_fci = True)
23 h2_filename = h2_molecule.filename
24 h2_molecule.save()
25

26 h2_molecule.load()
27 h2_hamiltonian = h2_molecule.get_molecular_hamiltonian ()
28 fermion_hamiltonian = get_fermion_operator(h2_hamiltonian)
29 qubit_hamiltonian_JW = jordan_wigner(fermion_hamiltonian)
30 qubit_hamiltonian_BK = bravyi_kitaev(fermion_hamiltonian , h2_hamiltonin.n_qubits)

1 # -------- LiH molecule -----------
2 import openfermion
3 from openfermion.transforms import get_fermion_operator
4 from openfermion.transforms import jordan_wigner
5 from openfermion.transforms import bravyi_kitaev
6 from openfermion import FermionOperator
7 from openfermion.chem import MolecularData
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8 from openfermionpyscf import run_pyscf
9

10

11 bond_length = 1.45
12 basis = ’sto -3g’
13 multiplicity = 1
14 charge = 0
15 description = str(round(bond_length ,2))
16 geometry = [(’Li’, (0., 0., 0.)), (’H’, (0., 0., bond_length))]
17 LiH_molecule = MolecularData(
18 geometry , basis , multiplicity , description=description)
19

20

21 LiH_molecule = run_pyscf(LiH_molecule ,
22 run_mp2 = True ,
23 run_cisd = True ,
24 run_ccsd = True ,
25 run_fci = True)
26 lih_filename = LiH_molecule.filename
27 LiH_molecule.save()
28

29 LiH_molecule.load()
30 active_space_start = 1
31 active_space_stop = 3
32 lih_hamiltonian = LiH_molecule.get_molecular_hamiltonian(
33 occupied_indices=range(active_space_start),
34 active_indices=range(active_space_start ,active_space_stop))
35

36 fermion_hamiltonian = get_fermion_operator(lih_hamiltonian)
37 qubit_hamiltonian_JW = jordan_wigner(fermion_hamiltonian)
38 qubit_hamiltonian_BK = bravyi_kitaev(fermion_hamiltonian , lih_hamiltonian.n_qubits)

Function to transform OpenFermion qubit Hamiltonians to QuTiP quantum objects.

1 from qutip import *
2

3 def qubit_hamiltonian_to_qutip(q_hamiltonian , N):
4 # q_hamiltonian is the OpenFermion qubit Hamiltonian
5 # N is the number of qubits
6 # Returns: qubit Hamiltonian as qutip quantum object
7 si = qeye (2)
8 sx = sigmax ()
9 sy = sigmay ()

10 sz = sigmaz ()
11

12 sx_list = []
13 sy_list = []
14 sz_list = []
15

16 for n in range(N):
17 op_list = []
18 for m in range(N):
19 op_list.append(si)
20 si_n = tensor(op_list)
21

22 op_list[n] = sx
23 sx_list.append(tensor(op_list))
24
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25 op_list[n] = sy
26 sy_list.append(tensor(op_list))
27

28 op_list[n] = sz
29 sz_list.append(tensor(op_list))
30

31 # read the qubit_hamiltonian from openfermion
32 l_h = list(q_hamiltonian)
33 s_h_0 = str(l_h [0])
34 t1_0 = s_h_0.split()
35 numero_0 = t1_0 [0]. split(’+’)[0]. split(’(’)[1]
36 numero_0 = float(numero_0)
37 H = numero_0*si_n
38

39 for i in range(1,len(l_h)):
40 s_h = str(l_h[i])
41 t1 = s_h.split ()
42 numero = t1[0]. split(’+’)[0]. split(’(’)[1]
43 numero = float(numero)
44 lletres = [t1 [1][1]]
45 numeros = [int(t1 [1][2])]
46 lletres2 = [j[0] for j in t1 [2:]]
47 numeros2 = [int(j[1]) for j in t1[2:]]
48 let = lletres+lletres2
49 num = numeros+numeros2
50 H_i = numero*si_n
51 for k in range(0,len(let)):
52 if let[k] == ’X’:
53 H_i = H_i*sx_list[num[k]]
54 if let[k] == ’Y’:
55 H_i = H_i*sy_list[num[k]]
56 if let[k] == ’Z’:
57 H_i = H_i*sz_list[num[k]]
58 else :
59 H_i = H_i
60 H = H + H_i
61

62 return H

Simulating the time dependent evolution with QuTiP.

1 from qutip import *
2 import numpy as np
3

4

5 # Function to generate the initial Hamiltonian
6 def generate_Hb(N):
7 # N is the number of qubits
8 # Returns: initial Hamiltonian consisting of sigma_x local fields.
9

10 si = qeye (2)
11 sx = sigmax ()
12

13 sx_list = []
14

15 for n in range(N):
16 op_list = []
17 for m in range(N):
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18 op_list.append(si)
19 si_n = tensor(op_list)
20

21 op_list[n] = sx
22 sx_list.append(tensor(op_list))
23

24 # construct the hamiltonian
25 Hb = 0
26

27 for n in range(N):
28 Hb += 1/2*(si_n - sx_list[n])
29

30 return Hb
31

32 # Interpolating functions of the adiabatic Hamiltonian
33

34 def Hp_coeff(t, args):
35 tau = args[’tau’]# time scale of the adiabatic evolution
36 exp = args[’exp’]# in case we want a nonlinear interpolation
37 return (t/tau)**exp
38

39 def Hb_coeff(t,args):
40 tau = args[’tau’] # time scale of the adiabatic evolution
41 exp = args[’exp’] # in case we want a nonlinear interpolation
42 return 1-(t/tau)**exp
43

44 # Performing the adiabatic evolution
45 def adiabatic_evolution(H, N, args , psi0 , tlist):
46 # H: Hamiltonian in the format H = [[Hb, Hb_coeff],[Hp, Hp_coeff ]]
47 # args: arguments of the time dependent function of the hamiltonian , args = {’

exp ’: exp , ’tau ’: tau}
48 # psi0: initial state to be evolved
49 # tlist: list of times for which the evolution is calculated
50 # returns: list of expected values of sigma_z for each qubit , and list of

evolved states at each time in tlist
51

52 c_op_list = [] # we are not using any colapse operators
53

54 si = qeye (2)
55 sz = sigmaz ()
56 sz_list = []
57

58 for n in range(N):
59 op_list = []
60 for m in range(N):
61 op_list.append(si)
62 op_list[n] = sz
63 sz_list.append(tensor(op_list))
64

65 options = Options(nsteps =100000 , store_states = True)
66

67 result = mesolve(H, psi0 , tlist , c_op_list , sz_list , args = args , options =
options)

68

69 return result.expect , result.states
70
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71

72 # ---- Example of how to run the evolution ----
73 N = 4 # number of qubits
74

75 Hp = qubit_hamiltonian_to_qutip(qubit_hamiltonian_JW , N) # final Hamiltonian
76 Hb = generate_Hb(N)
77

78 tau = 75 # time scale of the adiabatic evolution
79 exp = 1 # linear path
80 args = {’tau’: tau , ’exp’: exp}
81

82 ground = Hb.groundstate(sparse=False , tol=0, maxiter =100000)
83 psi0 = ground [1] # initial state is the ground state of Hb
84

85 tlist = np.linspace(0, tau , 2*tau)
86

87 # adiabatic Hamiltonian
88 H = [[Hb, Hb_coeff], [Hp, Hp_coeff ]]
89 expect , evolved_state = adiabatic_evolution(H, N, args , psi0 , tlist)

Functions to calculate the entanglement.

1 import numpy as np
2 from qutip import *
3

4

5 def entanglement_entropy(state , partition):
6 # state - state for which we want to calculate the entanglement entropy
7 # partition - integer or array of integers from 0 to N-1 that indicate the

subsystem with respect to which we calculate the partial trace
8 # Returns: the Von Neumann entropy of the partial trace
9

10 dm = state*state.dag() # density matrix
11 partial_dm = dm.ptrace(partition) # partial trace
12 return entropy_vn(partial_dm , base = 2) # Von Neumann entropy
13

14 def max_entanglement(state , partitions):
15 # partitions: partitions of the system considered , in our case partitions =

[[0 ,1] ,[0 ,2] ,[0 ,3]]
16 # returns: maximized entanglement entropy over partitions
17 entanglements = []
18 for partition in partitions:
19 entanglements.append(entanglement_entropy(state ,partition))
20 return np.max(entanglements)

Miscellaneous.

1 from qutip import *
2

3 # generating the basis elements as qutip quantum objects
4 def generate_basis_element(v, N):
5 # N: number of qubits
6 # v: list of length N with zeros and ones
7 # returns: list v converted into a basis state
8

9 lists = []
10 for i in range(0,N):
11 if v[i]==0:
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12 lists.append(basis (2,0))
13 if v[i]==1:
14 lists.append(basis (2,1))
15 return tensor(lists)
16

17 def generate_basis(N):
18 # N: number of qubits
19 # returns: list with the 2^N computational basis elements , list with labels

ready to be used by matplotlib.
20

21 a = [0,1]
22 basis = []
23 basis_label = []
24 # Here we are assuming N=4
25 for i in a:
26 for j in a:
27 for k in a:
28 for t in a:
29 basis.append(generate_basis_element ([i,j,k,t],N))
30 basis_label.append(r’$|%u, %u, %u, %u \rangle$ ’%(i,j,k,t))
31 return basis , basis_label
32

33 energies = H.eigenenergies(sparse=False , sort=’low’, eigvals=2, tol=0, maxiter
=100000) # calculates the two lowest energies of H

34 eigensates = H.eigenstates(sparse=False , sort=’low’, eigvals=2, tol=0, maxiter
=100000) # calculates the two lowest energy eigenstates of H

35 overlap_square = abs(eigenstates [1][0]. overlap(state))**2 # square overlap of state
with the lowest energy eigenstate in eigenstates
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